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(a) A furnished dollhouse (b) 102 collision shapes for small characters (c) 4 collision shapes for large characters

Figure 1: A shape like this furnished dollhouse (a) has different collision accuracy requirements depending on the expected
scale of characters or objects interacting with it. We find the navigable space where characters of a given size could actually fit,
and use that space to generate an appropriate collision representation – e.g., (b) a 102-part approximate convex decomposition,
appropriate for characters as small as 2% of the house’s width (computed in 5.6 seconds), or (c) a 4-part decomposition for
characters at least as wide as the house (computed in 0.9 seconds).

ABSTRACT
Approximate convex decomposition – approximating a shape by
a set of convex hulls – is a popular approach to creating efficient
collision representations for games and simulations. Existing algo-
rithms to construct such decompositions are typically driven by
general surface- or volume-based error metrics that can’t ignore
unreachable internal surfaces nor provide local control over the
results. We introduce the problem of navigable approximate convex
decomposition: First, define a navigable space for the input shape
which other objects in the game or simulation must be able to move
through, then find a decomposition which does not overlap that
space. We show how to automatically find such navigable space,
how to customize it, and we introduce an approximate convex de-
composition algorithm that protects it. Our results demonstrate
that this approach can generate decompositions that meet applica-
tion requirements faster and with fewer convex hulls than previous
methods, while providing a new level of flexibility in defining what
those requirements are.
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1 INTRODUCTION
Video games and real-time physically-based simulations often use
a simplified collision representation for the objects that they need
to simulate or collide against: a virtual car, for example, may be
represented by thousands of triangles for rendering, but only four
cylinders and a box for collision. Especially in games, this is a
ubiquitous industry standard: Almost every character, vehicle and
environment object in a modern AAA game will have associated
simple collision shapes like those visualized in Fig. 2b. These col-
lision representations are often carefully fine-tuned by artists to
use the fewest, simplest, collision primitives possible while still
remaining accurate enough for the game or simulation to work as
expected.

In addition to spheres, boxes and capsules, convex hulls are a
popular choice for collision representation in these performance-
critical applications: They are expressive in the range of shapes
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(a) Sample ‘game-ready’ assets (b) Their collision shapes

Figure 2: (a) Sample game assets from Unreal Engine for
Fortnite, by Epic Games, Inc, used with permission. (b) Their
corresponding collision shapes, demonstrating industry best-
practices: Shapes are coarsely approximated by spheres,
boxes, capsules and convex hulls.

they can represent, while still being relatively efficient to query for
collision thanks to methods such as GJK [den Bergen 1999].

Approximate convex decomposition – the problem of automati-
cally building such a collision representation with convex hulls – is
a well-studied problem [Lien and Amato 2004, 2007; Mamou 2016;
Mamou and Ghorbel 2009; Thul et al. 2018; Wei et al. 2022], and the
V-HACD [Mamou 2016] method is directly supported by popular
game engines as a collision generation method [Epic Games 2023].

The question of whether a given approximate convex decomposi-
tion is ‘good enough’ for a given simulation or game is application-
specific, and artists will often manually tune the parameters of an
automatic convex decomposition algorithm for each object that
needs collision shapes. The criteria for this tuning is a mix of aes-
thetics (e.g., the same level of inaccuracy may look worse on a floor,
where it makes the character appear to float, compared to a ceil-
ing) and functional requirements (e.g., characters must be able to
pass through a doorway). The parameters of existing approximate
convex decomposition algorithms can only indirectly address these
criteria, by controlling the number of generated parts, or the maxi-
mum allowed difference between the shape and the decomposition
according to some ‘concavity’ metric (typically based on volume
differences and/or surface distances).

Our contributions in this work are:

• We introduce the concept of navigable space to automatic col-
lision shape generation, to directly capture the application-
specific acceptability criteria for our collision shapes.
• We introduce a method to automatically find navigable space
for characters of a given size, and also show how to locally
customize that space.
• We show how our navigable space representation can be used
to guide an approximate convex decomposition algorithm
to automatically generate reliable, functional, and efficient
collision representations with flexible support for locally-
targeted art direction where needed.

2 RELATEDWORK
2.1 Approximate Convex Decomposition
The many previous approaches to approximate convex decompo-
sition can be largely divided by three considerations: (1) the ‘con-
cavity’ metric used to decide when an approximate decomposition
is good enough, (2) the method to choose where to split parts that
are not good enough and/or which smaller parts to merge together,
and (3) whether to perform preprocessing or discretization of the
input.

2.1.1 Concavity metrics. Previous concavity metrics take some
measure of the difference between the mesh surface and the convex
hull, but there is a wide variety of approaches to do so.

Surface-based metrics attempt to characterize the difference
between samples on the mesh surface and the hull, such as the
difference along the mesh normal direction [Mamou and Ghorbel
2009], or the distance of a path from the surface to the hull [Lien
and Amato 2004]. These metrics are often unable to see non-local
error, which can cause the method of Mamou and Ghorbel [2009]
to cover the opening of a cup with hulls generated from the cup’s
outer surface.

Volume-based methods [Mamou 2016; Thul et al. 2018] instead
compare the volume of parts of the mesh to the volumes of the
corresponding convex hulls; this is much better at avoiding non-
local error, but can miss large thin features.

A hybrid method of Wei et al. [2022] introduced a metric based
on both the Hausdorff distance and (re-scaled) volume differences,
allowing both non-local and thin features to be better captured.
However, it cannot ignore unreachable surface detail – like the doll
furniture in Fig. 1.

2.1.2 Spitting and merging. Strategies to split too-concave parts
often work by proposing a set of cutting planes and choosing the
plane that best minimizes their concavity metric. Mamou [2016];
Wei et al. [2022] sample axis-aligned planes, Thul et al. [2018]
sample planes through concave edges (inspired by the exact method
of Chazelle [1981]), and Lien and Amato [2007] use a more global
analysis of concave features to place cut planes. Wei et al. [2022]
use a Monte Carlo tree search to globally optimize the combined set
of cutting planes. After cutting the mesh into smaller parts, Mamou
[2016]; Wei et al. [2022] then merge parts when doing so will not
raise the concavity metric too much. The method of Mamou and
Ghorbel [2009] only uses merges – starting with the individual
triangles as parts, and locally merging based on their concavity
metric.

2.1.3 Preprocessing. To reliably compute volumes of an input shape,
or cut it with planes, many methods require a clean, watertight
mesh or some other volumetric representation. V-HACD [Mamou
2016] addresses this by voxelizing the input, guaranteeing a solid
input for decomposition at the cost of some accuracy. Other work
assumes the user has provided a clean input, or that some prepro-
cess can be run to fix a bad input: The published implementation
of Wei et al. [2022], for example, runs an implicit surface recon-
struction on problematic inputs – creating a slightly offset version
of bad inputs, while still being more precisely accurate on clean
inputs.
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2.1.4 Additional applications. Approximate convex decomposition
is not limited to the problem of representing a single, static collision
mesh: for example, Thul et al. [2018] introduced an efficient solu-
tion for decomposition of an animated mesh, and learning-based
methods [Chen et al. 2020; Deng et al. 2020] have used convex
decomposition as a generative model – for example finding a 3D
decomposition given only a 2D image as input.

2.2 Path Finding
The idea of building an explicit model of navigable space is often
used to enable path finding for game AI and robot navigation –
for example, defining a projected grid of walkable space [Bandi
and Thalmann 1998], a ‘Nav Mesh’ of walkable surfaces [Snook
2000], or a ‘Configuration Space’ of robot positions [de Berg et al.
2008; Lozano-Pérez 1990]. Many representations of such spaces
have been proposed; our approach was inspired by the implicit fast
marching navigation method of Sethian [1999].

3 NAVIGABLE SPACE
We define a navigable space of a shape S as a space around S that
any other object in a given application should be able to freely pass
through, and a navigable approximate convex decomposition as an
approximate convex decomposition that doesn’t overlap (satisfies)
a given navigable space. Note a decomposition that satisfies a con-
servatively over-estimated navigable space also satisfies any more
accurate navigable space contained within.

3.1 Automatic Construction
We construct a conservative navigable space
using two parameters: First, a radius 𝑟 defin-
ing a ball B. We assume that all collision-
relevant objects are large enough to fully
contain this ball (for example, all characters
in a game having capsule colliders with at
least this radius). Second, we introduce a tol-
erance distance 𝑡 at which it is acceptable to approximate S. Any
space that B can reach while staying at least distance 𝑡 away from
S is considered navigable space.

We start by defining a center-navigable space which ball B’s
center can reach. The ball center can be placed at any position 𝑝

that satisfies:

SDF(S, p) ≥ 𝑟 + 𝑡 . (1)

where SDF(S, p) is the signed distance function (Fig. 3a).
We refine the center-navigable space to only consider collision-

relevant space, near enough to the shape that ball B could overlap
the shape’s convex hull, SDF(Hull(S), p) ≤ 𝑟 where Hull(S) is an
exact convex hull (note the convex parts cannot extend beyond
the overall convex hull, so tolerance 𝑡 isn’t needed here), and the
center-reachable space, which ball B could arrive at by traversing
a contiguous path, starting from outside the convex hull (Fig. 3b).
Because internal ‘air-pockets’ of S are not reachable, we can also
replace the signed-distance function SDF(S, p) with an unsigned
distance,DF(S, p), which is simpler to compute and doesn’t require

S to form a solid. This gives the definition of relevant, center-
navigable space as:

Relevant(p) = SDF(Hull(S), p) ≤ 𝑟 ∧ DF(S, p) ≥ 𝑟 + 𝑡 . (2)

We find the boundary of center-reachable, relevant space by
using Marching Cubes [Lorensen and Cline 1987] to mesh the
true/false boundary of Eq. (2), using grid cells of size 𝑡 . To ensure
we only include the reachable portion, we specifically use the con-
tinuation method [Bloomenthal 1994]: Given seed points and a
fixed grid resolution, output the marching cubes surfaces at the
grid cells containing the seed points, and at the grid cells that can
be found by locally following the implicit surface from those cells.
We choose seed points on the outer-most relevant surfaces of the
space by sampling the faces of Hull(S) and offsetting by 𝑟 in the
face normal direction. The continuation method then constructs
only the reachable portion of the relevant, center-navigable space
of S. Finally, the boundary of center-navigable space can be offset
by radius 𝑟 to find the navigable space (Fig. 3c).

3.2 Representation
We need a representation of navigable space that can be quickly
queried during construction of the convex decomposition. Moti-
vated by the relative simplicity and speed of sphere-vs-convex
overlap tests, we represent navigable space with a set of spheres. A
sphere at position p has radius determined by the tolerance, 𝑡 , and
distance function, DF(S, p):

Radius(p) = max(0,DF(S, p) − 𝑡) . (3)

We convert theMarching Cubes-generatedmesh of center-navigable
space to a set of spheres representing the navigable space by adding
a sphere on each mesh vertex – letting the spheres cover the offset
from center-navigable to navigable space. Note this representation
is approximate, with error based on the marching cubes grid size.

3.3 Customization
It is easy to customize the navigable space by adding new spheres
at any position, with radius set by Eq. (3). Such manual additional
sphere placements can be used to require more details at specific
locations in the decomposition without any need to tweak global
parameters (Fig. 4).

Our implicit definition of center-navigable space can also be
customized to support user-specified obstacles – blocking offwould-
be navigable space can allow simpler decompositions. To do so,
we update Eq. (2) with an optional, user-specified signed-distance
function, BlockSDF:

CustomRelevant(p) = BlockSDF(p) ≥ 𝑟 ∧ Relevant(p). (4)

For example, an impassable floor can be specified by setting:

BlockSDF(p) = p.𝑧 − 𝐹𝑙𝑜𝑜𝑟𝐻𝑒𝑖𝑔ℎ𝑡, (5)

where Z is up, which can allow our decomposition algorithm to
automatically ignore concavities that would only be navigable if
the object was approached from below – great for objects that will
always be placed on a solid floor (Fig. 5).



SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Andrews

(a) Potential ‘center-navigable space’ (blue) (b) With unreachable/irrelevant removed (c) Expanded to navigable space (checkered)

Figure 3: The process to find navigable space, visualized. a) The potential ‘center-navigable space’ (blue) for ball B (black) is
separated from shape S (yellow) by tolerance 𝑡 (purple) plus B-radius 𝑟 (orange). b) The actual center-navigable space, in blue,
after discarding irrelevant space outside the convex hull of S offset by 𝑟 (dashed line) and unreachable space not connected to
that offset hull. c) The center-navigable space is offset by radius 𝑟 to find the navigable space (blue + checkered). We show an
example 6-part convex decomposition of S that does not cover the navigable space.

(a) Input (b) Automatic (c) Custom

Figure 4: (a) A car and a custom navigable-space sphere (ma-
genta). (b) An automatic, 9-part decomposition for large-scale
characters, fully covering the inside of the car. (c) The same
automatic settings, but with the custom sphere added, gives
a 15 part decomposition that leaves space for the sphere.

(a) Input (b) Without floor (c) With floor

Figure 5: (a) A dome of small, tiled hexagons. (b) An automatic
decomposition finds the interior navigable from below, and
models it with 27 parts. (c) Using Eq. (5) to add a solid floor
allows a single-part decomposition.

4 NAVIGABLE CONVEX DECOMPOSITION
4.1 Decomposition Algorithm
To create an approximate convex decomposition D that doesn’t
overlap a given navigable space N , we repeatedly cut shape S into
smaller parts until no parts overlap N (Alg. 1). We then simplify
D by repeatedly merging adjacent parts wherever the resulting
merged part will not overlap N (Alg. 2).

We optimize this process in two ways: (1) To reduce the cost of
testing against navigable space during the split phase, we keep track
of the subset of navigable spheres overlapping each part, and only
test against those subsets – which tend to shrink quickly in size as
the parts are cut. (2) To reduce the number of merges we need to
consider, we maintain a connection graph – a graph tracking which

Algorithm 1: Navigable Convex Decomposition(S,N )
Input: Shape mesh S, and navigable spheres N
Output: Convex decomposition D

1 D ← ∅ // Decomposition

2 G ← ∅ // Graph of connections between parts

3 // Only track nav. spheres overlapping Hull(S)
4 N ← {𝑆 | 𝑆 ∈ N , 𝑆 ∩ Hull(S) ≠ ∅}
5 Q ← {(S,N)} // Queue of (part, nav. spheres) tuples

6 // Cut parts until N ∩ D = ∅
7 while (𝑃𝑎𝑟𝑡, 𝑆𝑝ℎ𝑒𝑟𝑒𝑠) ← Q .Dequeue() do
8 if 𝑆𝑝ℎ𝑒𝑟𝑒𝑠 = ∅ then
9 D ← D ∪ 𝑃𝑎𝑟𝑡

10 else
11 𝑃𝑙𝑎𝑛𝑒 ←ChooseCutPlane(𝑃𝑎𝑟𝑡) // Sec. 4.1.1

12 𝑃1, 𝑃2 ←Cut(𝑃𝑎𝑟𝑡, 𝑃𝑙𝑎𝑛𝑒)

13 MergeGraphNodes(G, 𝑃𝑎𝑟𝑡, 𝑃1, 𝑃2) // Sec. 4.1.2

14 // Filter relevant navigable spheres per part

15 𝑁1 ← {𝑆 | 𝑆 ∈ 𝑆𝑝ℎ𝑒𝑟𝑒𝑠, 𝑆 ∩ Hull(𝑃1) ≠ ∅}
16 𝑁2 ← {𝑆 | 𝑆 ∈ 𝑆𝑝ℎ𝑒𝑟𝑒𝑠, 𝑆 ∩ Hull(𝑃2) ≠ ∅}
17 Q .Enqueue((𝑃1, 𝑁1))
18 Q .Enqueue((𝑃2, 𝑁2))
19 end if
20 end while
21 return MergeParts(D,G,N) // Alg. 2

parts are approximately in contact as we cut and merge – and only
consider merges between parts that are connected in that graph.

4.1.1 Choice of Cut Planes. Alg. 1 will always find a decomposition
that satisfies the navigable space as long as the cuts sufficiently
reduce the size of the convex parts: A convex part with bounding
box diagonal length less than 𝑡 can never be farther than 𝑡 from
the input shape, so cannot overlap the navigable space, which is by
construction at least distance 𝑡 from the input shape.
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Algorithm 2:MergeParts(D,G,N )
Input: Convex decomposition D, graph of connections

between parts G, and navigable spheres N
Output: Updated convex decomposition D

1 Q𝑝𝑟𝑖 ← G.Edges() // Priority queue of edges in G
2 // Merge parts where doing so would not overlap N
3 while (𝑃1, 𝑃2) ← Q𝑝𝑟𝑖 .DequeueBest() do
4 𝑀𝑒𝑟𝑔𝑒𝑑𝑃𝑎𝑟𝑡 ← Merge(𝑃1, 𝑃2)

5 if Hull(𝑀𝑒𝑟𝑔𝑒𝑑𝑃𝑎𝑟𝑡) ∩ N = ∅ then
6 // Replace 𝑃1, 𝑃2 w/ 𝑀𝑒𝑟𝑔𝑒𝑑𝑃𝑎𝑟𝑡 in D, G, Q𝑝𝑟𝑖
7 D ← D ∪𝑀𝑒𝑟𝑔𝑒𝑑𝑃𝑎𝑟𝑡 − 𝑃1 − 𝑃2
8 G.CollapseEdge(𝑃1, 𝑃2)
9 Q𝑝𝑟𝑖 .Remove(Edges w/ 𝑃1 or 𝑃2)

10 Q𝑝𝑟𝑖 .Enqueue(MergedPart’s edges)
11 end if
12 end while
13 return D

(a) 𝐸𝑑𝑔𝑒𝑠 = 0 (b) 𝐸𝑑𝑔𝑒𝑠 = 4 (c) 𝐸𝑑𝑔𝑒𝑠 = 0 (d) 𝐸𝑑𝑔𝑒𝑠 = 4

Figure 6: Sampling concave edges for cutting planes is es-
pecially helpful for low-poly shapes, like this flipped table
and torus. (a) Table without concave edges (9 hulls). (b) Table
using 4 concave edges (5 hulls). (c) Torus without concave
edges (24 hull). (d) Torus using 4 concave edges (14 hulls).

Table 1: Average part counts and runtimes for the V-HACD
dataset meshes (Sec. 6.1.1) when varying the number of con-
cave edges sampled to generate candidate cutting planes,
with navigable space parameters 𝑟 = 5%, 𝑡 = 1%, where 𝑟, 𝑡 are
specified relative to the longest bounding box dimension.

# Concave Edges Sampled # Parts Runtime (s)

0 48.0 2.8
2 40.8 3.1
4 40.1 3.9
8 40.2 4.6
32 39.4 10.0
64 38.6 17.3

To guarantee the part width can be reduced enough to protect
the navigable space, we propose candidate cutting planes bisecting
the part along each major axis where the part’s bounding extent is
at least 𝑡/2. To heuristically improve the results, we also include
candidate planes sampled through concave edges of the source ge-
ometry – that is, edges whose adjacent faces form a local concavity.
Specifically, we take four concave edges (prioritized by midpoint
depth inside the part’s convex hull) and sample three cutting planes

through each edge (one bisecting the edge’s dihedral angle, and two
aligned to the edge’s adjacent faces). These planes through concave
edges are especially useful on relatively simple input meshes, like
those shown in Fig. 6. Table 1 explores the cost/benefit trade-off of
sampling concave edges.

Of our candidate cutting planes, we heuristically choose the
plane that creates parts with the smallest convex hull volumes:

argmin𝑃𝑙𝑎𝑛𝑒 Volume(Hull(𝑃1)) + Volume(Hull(𝑃2)),
where 𝑃1, 𝑃2 ← Cut(𝑃𝑎𝑟𝑡, 𝑃𝑙𝑎𝑛𝑒). (6)

Note that in some cases, like the initial cut of a torus, Eq. 6 will
score all cut planes equally. To nudge our algorithm toward more
evenly-divided results in these cases, we apply a slight bias (scaling
score by 0.99) in favor of the axis-aligned plane that cuts through
the longest bounding box side.

4.1.2 Choice of Parts to Merge. Alg. 2 greedily reduces the number
of parts while ensuring the navigable space remains protected.
To avoid the need to consider the complete graph of all possible
part merges, we maintain a connection graph of part adjacency. We
update this during the cutting process: When a part is split in two,
we update edges that were connected to the original part, and add
an edge connecting the two new parts if their axis-aligned bounding
boxes are closer than a small tolerance distance. During the merge
phase, we only consider merges between parts that are neighbors
in the connection graph, and we keep the connection graph up to
date by collapsing the corresponding edge after each merge.

We heuristically choose to merge the (edge-connected) parts
where the volume of the merged convex hull is closest to the vol-
umes of the individual hulls of the original parts:

argmin𝐴,𝐵 Volume(Hull(
⋃

𝑖∈𝐴,𝐵
𝑃𝑖 )) −

∑︁
𝑖∈𝐴,𝐵

Volume(Hull(𝑃𝑖 )), (7)

where 𝑃𝑖 are original parts generated by the cutting phase, and
merge candidates 𝐴, 𝐵 are edge-connected parts composed of origi-
nal parts. Note that we sum the volumes of the original parts, and
not the combined part volumes, to avoid double-counting volume
in regions where convex hulls overlap after merging.

4.1.3 Robustness. Our algorithm can be made to run robustly on
any ‘triangle soup’ input mesh, regardless of artifacts such as self-
intersections, open boundaries, or non-manifold geometry, pro-
vided that: (1) for co-planar parts on which a 3D convex hull al-
gorithm would fail, we slightly thicken the input by duplicating
vertices with a small offset along the degenerate axis or axes, and
(2) we detect if the input shape is not a well-defined solid (e.g., has
artifacts like open boundaries) and use non-solid plane cuts in that
case. The non-solid plane cut simply splits triangles where they
cross the plane, creating open mesh boundaries.

5 COLLISION SHAPE MERGING
The merging phase of our convex decomposition algorithm can
be adapted to solve a variant of the convex decomposition prob-
lem: Simplifying an existing general collision shape representation,
where the collision may be represented by multiple primitives such
as spheres, oriented boxes, and capsules, as well as convex hulls.
This is especially useful when generating collision for a model that
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(a) Input (b) 𝑟 = 5%, 𝑡 = 1% (c) 𝑟 = 10%, 𝑡 = 1%

Figure 7: (a) A one-sided mesh of a bottle, with a hole at
the top, from the PartNet-Mobility dataset [Xiang et al.
2020]. (b) Decomposition using navigable space parameters
𝑟 = 5%, 𝑡 = 1%. The interior is navigable. (c) Decomposition
using navigable space parameters 𝑟 = 10%, 𝑡 = 1%. The radius
of the hole is smaller than 𝑟 + 𝑡 , so the interior is filled aside
from a small, still-navigable indent at the top. (Note: 𝑟, 𝑡 are
specified relative to the longest bounding box dimension.)

(a) Input (b) Input Collision (c) Merged

Figure 8: (a) A shape built from premade parts (each outlined
in yellow). (b) Each premade part already has simple collision
defined. (c) The result of our collision shape merging.

was created by combining (or ‘kitbashing’) instances of preexisting
models, as we can leverage the collision that was created for the pre-
existing models in isolation. For example, the small scene in Fig. 8
has a railing built of 7 instanced parts, each with box collision. A
top-down convex decomposition would not know that box collision
is acceptable for those shapes, but the bottom-up algorithm can
directly use those boxes – merging them to represent the combined
railing with just 2 shapes.

Our collision shape merging algorithm is a straightforward appli-
cation of Alg. 2, with the following adjustments: (1) We convert all
input parts to convex hulls to run the algorithm, and on completion
we convert any parts that were not merged back to their original
representation. For the parts that were merged, we can optionally
attempt to further simplify the representation by fitting a minimum
volume sphere and oriented box to each part [Eberly 2020], and
replacing the hull with the best-fit shape if it is within a tolerance
distance of the convex hull. (2) We generate the required connection
graph by connecting all parts with bounding boxes closer to each
other than a user-specified distance.

Note that Eq. (7) assumes the input parts do not overlap, which
is true by construction for Alg. 1, but may not be true here. When
parts overlap, the metric is biased in favor of overlapping pairs
because it double counts the volume of their intersection. While an
alternate metric could be used, we find that merging overlapping

(a) Input (b) Ours (c) CoACD (d) V-HACD

Figure 9: Decompositions of (a) this hollow mesh heart. (b)
Our algorithm with 𝑟 = 5%, 𝑡 = 1% fills the (non-navigable)
inside of the heart (2 hulls). (c) Even with 𝑡𝑐 = 20%, CoACD
avoids filling the heart (12 hulls). (d) V-HACD with ℎ𝑢𝑙𝑙𝑠 = 2
loses the outer shape of the heart (2 hulls).

parts early typically still gives acceptable results, so we still use
this metric.

6 EVALUATION
6.1 Comparison to Prior Work
We run our decomposition algorithm, as well as V-HACD [Mamou
2016] and the ‘Collision-Aware’ method ofWei et al. [2022], CoACD,
on two datasets of meshes to evaluate how the methods perform.
All evaluations are run on the same machine, with a 64-core, 2.7
GHz AMD Threadripper processor and 256 GB of RAM. Note that
all distance-based parameters (𝑟, 𝑡 for our algorithm, and concavity
tolerance 𝑡𝑐 for CoACD) are specified in terms of a percentage of
the longest side of each shape’s bounding box.

6.1.1 Datasets. We use two sets of meshes: First, a set of 61 meshes
distributed with V-HACD, which have often been used as a test set
for approximate convex decomposition algorithms. This dataset
includes a variety of shape categories, including complete scans,
open/partial scans, humans, animals, and various objects. It does not
include arrangements of many parts to form larger shapes – as may
be created by ‘kitbashing’ – so to consider that case, we also use the
2346 assemblies of meshes in the PartNet-Mobility dataset [Xiang
et al. 2020]. Note that these assemblies are parametric, with many
possible poses; for our evaluation we take the default pose for each
assembly.

6.1.2 Quantitative Evaluation Overview. Previous approximate con-
vex decomposition algorithms do not have a concept of navigable
space; instead, V-HACD and CoACD are controlled by parameters
such as the maximum requested hull count and a tolerance for a
‘concavity’ metric. To compare the results of previous methods to
our own, we evaluate a range of parameters for each algorithm, and
report the timings, number of parts used, and how closely the results
can satisfy two different navigable spaces. Specifically, for CoACD
we vary the concavity tolerance parameter, 𝑡𝑐 , which approximates
the distance between the convex decomposition and the input shape.
For V-HACD we vary the number of hulls requested, because di-
rectly specifying a number of hulls is the current best-supported
usage pattern [neemoh and Ratcliff 2023]. To favor accuracy, we
run V-HACD with a relatively-high resolution of 1,000,000 voxels.
The two navigable spaces we evaluate against are parameterized by
(1) a coarse navigable space, 𝑟 = 2.5%, 𝑡 = 5%, and (2) a fine-grained
navigable space, 𝑟 = 5%, 𝑡 = 1%. Note that for the fine-grained space
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Table 2: Evaluation of approximate convex decompositions of shapes in the V-HACD and PartNet-Mobility datasets. We list how
much each decomposition overlaps two navigable spaces generated from different 𝑟, 𝑡 parameters. The ‘% Overlap’ column lists
the percent of decompositions that overlap the navigable space, and the ‘Max Overlap’ column lists how deeply any navigable
sphere overlaps any decomposition as a fraction of the sphere radius, with a maximum measured value of 1 indicating a
navigable sphere’s center was inside a convex hull. The runtime is an average time per part, in seconds.

𝑟 = 2.5%, 𝑡 = 5% 𝑟 = 5%, 𝑡 = 1%
Dataset Method Parameters # Parts Runtime (s) % Overlap Max Overlap % Overlap Max Overlap

V-HACD

V-HACD
ℎ𝑢𝑙𝑙𝑠 = 10 10.0 4.7 70% 1 97% 1
ℎ𝑢𝑙𝑙𝑠 = 25 25.0 4.6 26% 1 95% 1
ℎ𝑢𝑙𝑙𝑠 = 100 98.2 4.5 0% 0 95% 0.73

CoACD
𝑡𝑐 = 10% 13.9 25.3 7% 0.24 93% 1
𝑡𝑐 = 5% 31.6 34.1 0% 0 93% 0.44
𝑡𝑐 = 1% 245.3 328.7 0% 0 38% 0.09

Ours 𝑟 = 2.5%, 𝑡 = 5% 8.4 1.1 0% 0 93% 1
𝑟 = 5.0%, 𝑡 = 1% 40.1 3.9 0% 0 0% 0

PartNet-
Mobility

V-HACD
ℎ𝑢𝑙𝑙𝑠 = 10 10.0 5.4 37% 1 93% 1
ℎ𝑢𝑙𝑙𝑠 = 25 25.0 5.1 17% 1 90% 1
ℎ𝑢𝑙𝑙𝑠 = 100 99.5 5.0 1% 1 85% 1

CoACD 𝑡𝑐 = 10% 15.0 49.0 6% 0.63 95% 1
𝑡𝑐 = 5% 33.7 64.9 0% 0 90% 0.55

Ours 𝑟 = 2.5%, 𝑡 = 5% 6.4 0.5 0% 0 95% 1
𝑟 = 5.0%, 𝑡 = 1% 24.4 1.7 0% 0 0% 0

(a) Input (b) Close-up view (c) Ours (d) CoACD (e) V-HACD

Figure 10: (a) A marble machine. (b) Close-up view of marble tunnel. (c) Our algorithm, run with parameters 𝑟 = 1%, 𝑡 = .5%
(chosen so 𝑟 + 𝑡 < 1/2 tunnel width), preserves the tunnel (1276 hulls). (d) CoACD, run with its (best supported) tolerance 𝑡𝑐 = 1%,
preserves the tunnel albeit with added thickness (1898 hulls). (e) V-HACD, run with 10,000,000 voxels and ℎ𝑢𝑙𝑙𝑠 = 2000, fails to
preserve the tunnel (2000 hulls).

we use a larger 𝑟 to explore a case where navigability is a more
significant factor. We run our own algorithm on both navigable
spaces.

6.1.3 Quantitative Analysis. We report results on each dataset in
Table 2. Our algorithm always satisfies its own navigable space.
Neither previous algorithm can reliably satisfy the fine-grained
space, though CoACD almost does so (with only small overlaps)
for its most-precise tolerance setting, at the cost of using a huge
amount of time and number of convex hulls. Both V-HACD and
CoACD can generally satisfy the coarse navigable space, however
both would require a manual parameter search for each input mesh
to do so with the fewest possible convex hulls. Note that CoACD
uses many more hulls than needed when its concavity tolerance 𝑡𝑐
matches the 𝑡 = 5% value of the coarse navigable space: for ≥ 93% of
both datasets, CoACD still satisfies the coarse navigable space even
when we double parameter 𝑡𝑐 to 10%. (This is likely due to nature

of the volumetric approximation used to define 𝑡𝑐 , which generally
over-estimates the error.) Overall, these results demonstrate the
power of our method to quickly find a smaller number of hulls that
satisfy our requirements.

6.1.4 Qualitative Analysis. We visualize the differences between
these algorithms on two illustrative test cases. First, a marble ma-
chine (Fig. 10) has the strict requirement that the marble tunnels
must remain open wide enough for marbles to pass through. By
specifying marble-sized 𝑟, 𝑡 parameters, our algorithm reliably does
so. V-HACD is not capable of this level of accuracy, and CoACD
with its most precise tolerance setting 𝑡𝑐 = 1% keeps the tunnels
open but thickens them. Second, we illustrate the value of navigable
space for a hollow shape (Fig. 9). Our algorithm reliably fills in the
hollow shape, but CoACD has no notion of unreachable surfaces,
and tends to preserve the interior even at large tolerance values.
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V-HACD likewise has no way to distinguish the unimportant in-
terior volume, so does not generate ideal results either. We show
additional comparisons to CoACD in Fig. 11 and 12, and to V-HACD
in Fig. 13.

6.2 Case Study
We integrated our collision shape merging algorithm into the inter-
nal content pipeline of a AAA video game, LEGO® Fortnite, which
heavily used assets built from combinations of smaller LEGO pieces.
Our method was used to automate generation of collision shapes
for over 1400 assets, each of which needed multiple sets of collision
shapes with different accuracy requirements (one set for character
collision, and another for a game-specific construction mechanic).
Our method’s ability to protect the navigable space consistently
across all examples enabled the game’s developers to tune parame-
ters visually for a subset of example cases and trust the system to
generate similar results for the whole set.

7 DISCUSSION
Our choice to represent the navigable space with spheres, and
to characterize all interacting shapes by a minimal-radius sphere,
was motivated by games which often use sphere- or capsule-based
colliders for characters. While the sphere-based representation, es-
pecially with custom sphere placements, should be able to represent
any desired level of accuracy, future work could explore tailoring
the navigable space search, and navigable space representation, to
differently-shaped character colliders.

In this work we focused on proving the viability of explicitly
representing and protecting navigable space. Our approximate con-
vex decomposition algorithm could be improved in other ways,
for example by using the random tree search for the best cutting
planes suggested by Wei et al. [2022], and perhaps adding a similar,
search-based approach to the merging part of the algorithm as well.
The resampling-based hull simplification step proposed by Mamou
[2016] could also be applied to reduce the number of vertices used
by each convex hull.
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(a) Input (b) Ours 𝑟 = 0.5%, 𝑡 = 1% (c) Ours 𝑟 = 5%, 𝑡 = 1% (d) CoACD 𝑡𝑐 = 1% (e) CoACD 𝑡𝑐 = 2%

Figure 11: (a) A fan model from the PartNet-Mobility dataset [Xiang et al. 2020]. (b) Our algorithm, run with 𝑟 = 0.5%, 𝑡 = 1%,
captures fine details (182 hulls). (c) Our algorithm, run with 𝑟 = 5%, 𝑡 = 1%, can use fewer hulls around small, inaccessible details
(108 hulls). (d) CoACD, run with tolerance 𝑡𝑐 = 1% (328 hulls). (e) CoACD, run with tolerance 𝑡𝑐 = 2% (190 hulls).

(a) Input (b) Ours 8 hulls (c) CoACD 2 hulls (d) Input (e) Ours 14 hulls (f) CoACD 1 hull

(g) Input (h) Ours 3 hulls (i) CoACD 1 hull (j) Input (k) Ours 5 hulls (l) CoACD 3 hulls

Figure 12: Our method’s 𝑟 parameter enables us to tailor collision to larger-scale characters, while still using a low tolerance
value. We show results of our method run with 𝑟 = 50%, 𝑡 = 1% (b,e,h,k), compared to results from CoACD with 𝑡𝑐 = 50% (c,f,i,l).
Note that increasing CoACD’s 𝑡𝑐 parameter to match our 𝑟 parameter loses large-scale features, such as the torus center and
space between table legs. Also note that our method’s torus result at this large 𝑟 is the same as for a much smaller 𝑟 (Fig. 13e).

(a) Input (b) Ours 29 hulls (c) V-HACD (d) Input (e) Ours 14 hulls (f) V-HACD

(g) Input (h) Ours 130 hulls (i) V-HACD (j) Input (k) Ours 83 hulls (l) V-HACD

Figure 13: We show results from our method and V-HACD (with resolution of 1,000,000 voxels) for the same hull counts. Our
method was run with 𝑟 = 5%, 𝑡 = 1% (b,e,h,k), then we set V-HACD to generate decompositions with matching hull counts (c,f,i,l).


	Abstract
	1 Introduction
	2 Related Work
	2.1 Approximate Convex Decomposition
	2.2 Path Finding

	3 Navigable Space
	3.1 Automatic Construction
	3.2 Representation
	3.3 Customization

	4 Navigable Convex Decomposition
	4.1 Decomposition Algorithm

	5 Collision Shape Merging
	6 Evaluation
	6.1 Comparison to Prior Work
	6.2 Case Study

	7 Discussion
	Acknowledgments
	References

