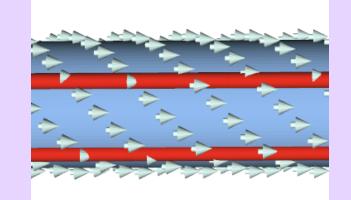
Generalized, Basis-Independent **Kinematic Surface Fitting**

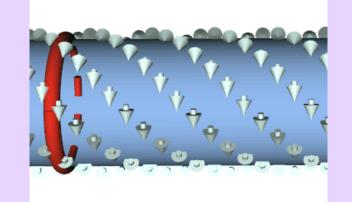
James Andrews, Carlo Séquin

Background

A kinematic surface is tangent everywhere to some easily parameterizeable, linear velocity field over space

Example: A cylinder is tangent everywhere to: A. Translation field: B. Rotation field:

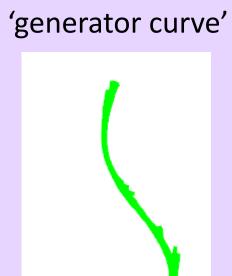




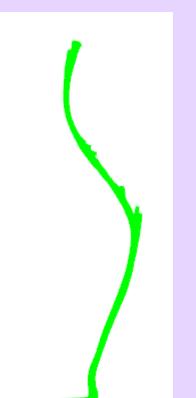
(B) Project data to (C) Advect generator

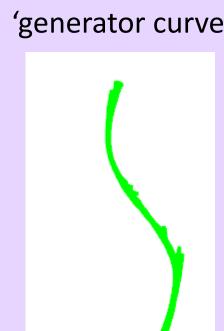
Kinematic surface fitting entails:

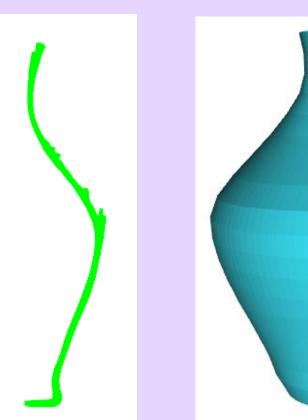
(A) Find a kinematic motion field



common plane; fit

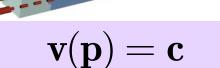


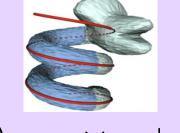




Kinematic surface field types:

Constant field





 $\mathbf{v}(\mathbf{p}) = \mathbf{r} \times \mathbf{p} + \mathbf{c} \quad \mathbf{v}(\mathbf{p}) = \mathbf{r} \times \mathbf{p} + \mathbf{c} + \gamma \mathbf{p}$

Spiral field

curve along motion field;

create kinematic surface

[H. Pottmann, J. Wallner, Computational Line Geometry, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.]

ACKNOWLEDGEMENTS

This work was supported in part by the National Science Foundation (NSF award #CMMI-1029662 (EDI)) and by Adobe Systems. Thanks to the Image-based 3D Models Archive, Tlcom Paris, and to the Stanford Computer Graphics Laboratory for some of the test meshes used.

Previous Methods

Common kinematic motion fitting method:

Parameterize $\mathbf{v}(\mathbf{p})$ by vector \mathbf{m} .

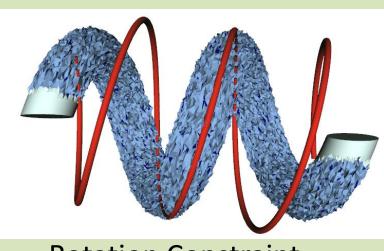
Solve:
$$\underset{\mathbf{m}}{\operatorname{argmin}} \sum_{i} (\mathbf{v}(\mathbf{p}_{i}) \cdot \mathbf{n}_{i})^{2}$$

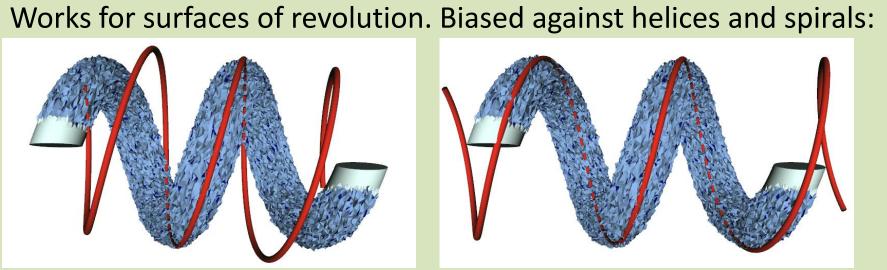
subject to some quadratic constraint, q(m)=1 Solve as small generalized eigenvalue problem.

Results depend on quadratic constraint.

Biased by scale of $\mathbf{v}(\mathbf{p})$. With noise, biases cause erroneous fits.

Rotation constraint: $\parallel \mathbf{r} \parallel^2 = 1$ (Rotation axis has magnitude 1.) [Pottmann and Randrup, 98]

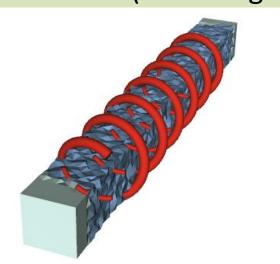


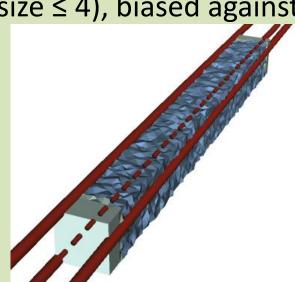


Rotation Constraint

Unit constraint: $\parallel \mathbf{m} \parallel^2 = 1$ (Complete param. vec. has magnitude 1.) [Gelfand and Guibas, 04; Hofer et al. 05]

Works for many cases. Biases depend on scale: At smaller scales (bounding box size ≤ 4), biased against translation:



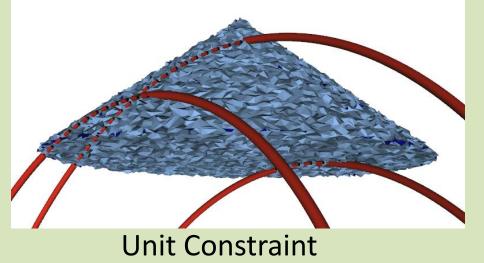


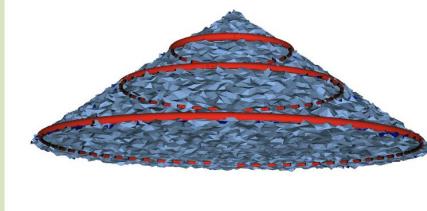
Unit Constraint

Taubin Constraint

(cause: rotation/scaling has smaller vel. at pts near axis, so smaller error)

At larger scales (bounding box size \geq 4), biased to offset rotation axis:





Taubin Constraint

(cause: rotation axis magnitude is smaller to permit offset)

Rescaling not the answer: No fixed scale for unit constraint works for all examples!

Improved Methods

We adapt methods previously used for algebraic surface fitting and other computer vision problems:

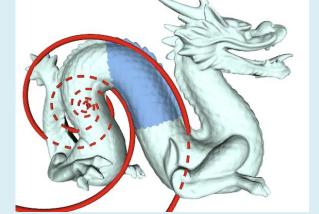
1. An Improved Quadratic Constraint

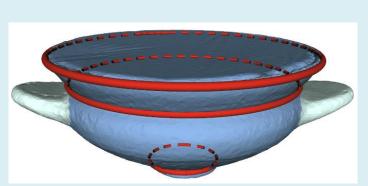
Taubin Constraint: $\sum \| \nabla_{\langle w.r.t. \text{ data params} \rangle} (error) \|^2 = 1$

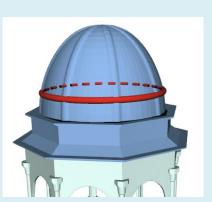
For KSF problem: $\sum \parallel \mathbf{v}(\mathbf{p}_i) \parallel^2 = 1$ (error in normal only)

"Improved" because:

Basis independent & less bias: Constraining avg. velocity prevents systematically lowering velocity for data points overall.







More examples fit with Taubin constraint

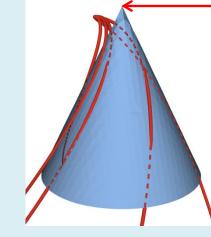
2. An Iterative Method:

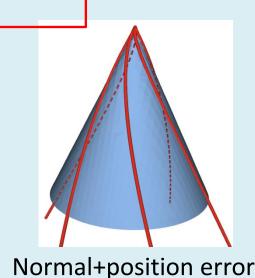
HEIV Method: Iteratively solve w/ Taubin's method

Reweight error for each data point to compensate for excess weight, based on last iteration's solution.

[Leedan and Meer, '00]

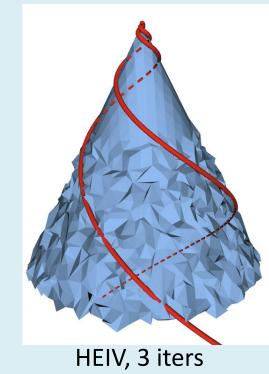
Detail: Use error in position, not just normal, to avoid degeneracy where $\mathbf{v}(\mathbf{p})=\mathbf{0}$

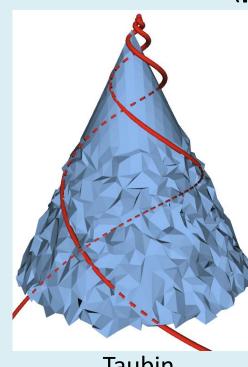




Constraint becomes: $\sum w_{\mathbf{p}} \parallel \nabla_{\mathbf{p}}(\mathbf{v}(\mathbf{p}_i) \cdot \mathbf{n}_i) \parallel^2 + \parallel \mathbf{v}(\mathbf{p}_i) \parallel^2 = 1$ $\ \ \longrightarrow$ A small weight for pos'n error; we use: $w_{\mathbf{p}}\coloneqq .001$

HEIV fits better than Taubin if data is better where $\mathbf{v}(\mathbf{p})$ is smaller:





Generalization

New velocity fields can be fit:

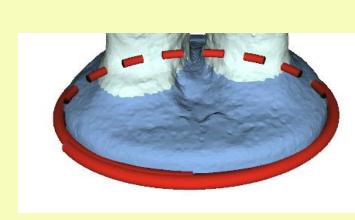
For example, an elliptical surface of revolution would be permitted by scaling a helical field:

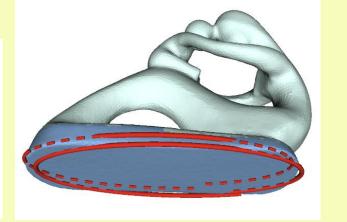
$$\mathbf{v}(\mathbf{p}) \coloneqq \mathbf{S}^{-1}(\mathbf{r} \times (\mathbf{S}\mathbf{p})) + \mathbf{c}$$

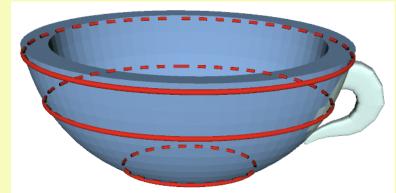
A general, linear form of this is:

$$\mathbf{v}(\mathbf{p}) \coloneqq \mathbf{A}\mathbf{p} + \mathbf{c}$$

The Taubin constraint works on this new field:







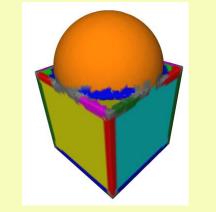
Elliptical revolutions fit using Taubin constraint

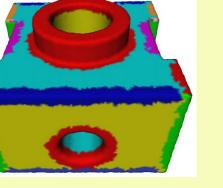
Applications

These improvements can robust-ify previous kinematic surface fitting applications.

Such applications include:

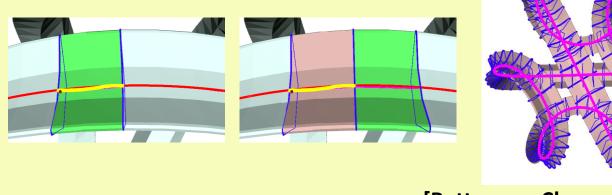
Surface segmentation:





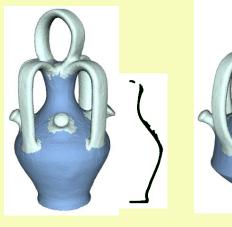
[Gelfand and Guibas, 04]

Sweep fitting (via 'chained' fields):



e.g. [Pottmann, Chen, and Lee, 98]

Interactive fitting for re-design:



e.g. [Andrews, Jin, Sequin, 12]