
Computer Graphics International 2011

Interactive Extraction and Re-Design of Sweep Geometries

James Andrews · Pushkar Joshi · Carlo Séquin

Abstract We introduce two interactive extraction mod-

ules that can fit the parameters of generalized sweeps

to large, unstructured meshes for immediate, high-level,

detail-preserving modification. These modules represent

two extremes in a spectrum of parameterized shapes:

rotational sweeps defined by a few global parameters,

and progressive sweeps forming generalized cylinders

with many slowly varying local parameters. Both mod-

ules are initialized and controlled by the user draw-

ing a few strokes onto the displayed original model.

We demonstrate the system on various shapes, rang-

ing from clean, mechanical geometries to organic forms

with intricate surface details.

Keywords Computer-Aided Design · Object Mod-

eling · Reverse Engineering · Rotational Sweeps ·
Generalized Cylinders · Progressive Sweeps

1 Introduction

Shape editing and re-design efforts often start with

dense triangle meshes. Many reverse engineering ap-

proaches to this problem aim to fit a higher-level model

such as a set of NURBS patches [9]. The best model

depends on user intent, which often changes during re-

design.

We propose a system that lets the user interactively

indicate a desired high-level model, and which then re-

turns a fitted model in seconds so that the user can

quickly switch to the best model for their current task.

J. Andrews · C. Séquin
UC Berkeley, Soda Hall, Berkeley, CA 94720
E-mail: jima@eecs.berkeley.edu

P. Joshi
Adobe Systems Inc., 345 Park Avenue San Jose, CA 95110

A B

C D

Fig. 1 A: the input surface; B: user draws two strokes (yel-
low) to extract the teapot body as a stationary, rotational
sweep; C: user edits the cross section; D: final surface with
modified cross sections and sweep paths of progressive sweeps
(fitted locally to the spout and handle) and modified profile of
a rotational sweep (fitted to the teapot body). Two different
modified versions of the handle were added for variety.

We choose to focus on sweeps, since sweeps are versa-

tile constructions that can represent a wide variety of

shapes with a modest set of parameters.

We demonstrate two practical modules for reverse

engineering, for two quite different types of geometry.

The first one extracts what we call stationary sweeps

characterized by a few global parameters. These are

generalizations of rotational sweeps. The second mod-

ule extracts what we call progressive sweeps, character-

ized by a larger number of smoothly varying local pa-

rameters. These produce a kind of generalized cylinder.

Each module can extract shapes that would be difficult

or impossible to approximate with the other one. Fig. 1

shows both modules in use.

The user is integral to our system. With one cursor

stroke, the user sets the starting parameters for a good

2 James Andrews et al.

sweep extraction. This user initialization focuses com-

putational effort and produces just the sweep marked

by the user stroke. After a sweep has been extracted,

the system offers the sweep parameters as edit handles,

so that the user can re-design the shape (Fig. 2).

2 Related Work

Extracting high-level structure from a low-level shape

representation has been extensively studied [15] and

is available in many modeling packages (e.g., [3]). In

CAD, the goal of reverse-engineering was part re-

manufacturing. Therefore, CAD approaches typically

convert point clouds into spline patches by a slow and

mostly manual process, prioritizing accuracy over speed

or memory usage. In graphics, the focus has been on full

automation [8] or artistic control [9].

There is a long history of fitting sweep primitives.

A few systems have fit sweep surfaces with fixed ori-

entation of the sweep cross-section, e.g. [4] and [14].

Most of the work on sweeps has focused on finding lin-

ear extrusions of planar curves, and on identifying local

rotational or helical symmetry, e.g. [10]. These are ex-

amples of what we call stationary sweeps. Pottmann

et al. [12] describe how to convert a point cloud to a

rotational sweep primitive using line geometry. Gelfand

and Guibas [6] and Benko et al. [1] use the optimization

framework of Pottmann and Randrup [12] to identify

regions that are ‘slippable’ (i.e. kinematically equiform)

regions. Similarly, our module for extracting stationary

sweeps uses the method from Hofer et al. [7] (conceptu-

ally similar to [12]) immersed in an optimization loop

that also considers input provided by the user.

Our module for fitting progressive sweeps builds

on the general recognition-and-optimization framework

described by Ramamoorthi and Arvo [13]. That system

extracts relatively simple sweeps by asking the user to

place a cylinder as a first approximation, and then it-

eratively optimizing parameters to deform it into the

given surface. However, it is often not clear where to

place the cylinder to align it with a complex sweep sur-

face (such as Fig. 4). Moreover, the general framework

in [13] simultaneously optimizes too many parameters

to permit fast optimization.

Compared to previous work on sweep finding, our

method can find sweeps along arbitrary paths and with

arbitrary rotations (twists) and non-uniform scaling of

the cross-section. We also focus on interactive perfor-

mance for an integrated mesh editing application. We

demonstrate our algorithm on some detailed organic

shapes that would not typically be handled by sweep-

fitting methods. Our system can fit sweeps quickly to

a wide variety of shapes, and can easily be used for

structured mesh editing.

3 Sweep Extraction Modules

3.1 Stationary Sweeps with Global Parameters

Our stationary sweep surfaces are generated by rotating

an arbitrary planar profile around a fixed axis in space,

while optionally also translating it and/or scaling it at

a constant rate. This includes surfaces of revolution,

helices and spirals. All surfaces generated this way are

composed of trajectories in a vector field describable by

only seven global parameters [7].

Our fitting algorithm is a region growing approach:

It starts from a few seed points provided by the user

and looks for neighboring points that fit into the same

7-parameter vector field. Alternatingly, we fit a sweep

model to the given points and then locally expand the

surface covered by adding points in a flood-fill mode

that fit within the current error margins. This process

is given as Algorithm 1.

Algorithm 1 Fit stationary sweep
1: Initialize sweep s to set of points m marked by user
2: while s continues to change do
3: Estimate parameters p from s [7]
4: Find max distance t from m to p
5: s = flood fill from m to points closer to p than t
6: end while

Our low-level fitting algorithm (line 3 in Algorithm

1) follows directly from Hofer et al. [7]. We differ in

the remainder of our approach because we prefer a

bottom-up region growing approach to their top-down
method. Specifically, a bottom-up process fits naturally

with the user specifying the portion of the model they

want to extract, by painting points onto a given sur-

face. If the extracted sweep does not cover enough of

the given model surface, the user may mark additional

points that should be included. The algorithm will then

increase the current error bounds sufficiently to allow

inclusion of those new points, – and possibly several

other regions as well.

3.2 Progressive Sweeps with Local Parameters

The progressive sweep module is designed to follow gen-

eralized cylinders with many unpredictable turns and

variations of the local cross section. These sweeps are

defined by a smoothly changing, affinely transforming

cross section, moving along a finely sampled polyline.

Our fitting process is given as Algorithm 2.

Our process starts by extracting an initial cross-

sectional template near the middle of the user stroke.

Interactive Extraction and Re-Design of Sweep Geometries 3

Algorithm 2 Fit progressive sweep
Initialize template T based on stroke drawn by user
for d = −1 to 1 step 2 do {Go forwards and backwards}

while error of fit below threshold do
Add segment to sweep in direction d
k := 2
repeat

Optimize newest k segments
k := 2 + k

until error of fit below threshold or k > 6
end while
Remove last segment (for which the fit failed)

end for

It traces around the local mesh geometry in a plane

that perpendicularly bisects the drawn user stroke. This

template is updated during a subsequent optimization

step in which a first prismatic sweep segment is fit to

the given mesh. The algorithm then refines the cross-

sectional template with a new cut perpendicular to this

prism axis.

The process then alternates between: Phase A:

adding a subsequent segment to the sweep path and op-

timizing its parameters, and Phase B: fine-tuning the fit

of this segment and of the last few segments in a joint

optimization of all their parameters, so as to achieve

an overall smooth fit of the progressive sweep. The ad-

dition of each new sweep segment implicitly extends

the sweep path, which emerges as a piecewise linear

polyline. For each new segment, the algorithm starts

out with a conservative, short extension of the sweep

path, and then lets the penalty function below (Eqn. 1)

determine the most effective parameters for the next

segment. To calculate this penalty function, we regu-

larly sample points pi on the last k segments of the

sweep and use the Levenberg-Marquardt algorithm [11]

to minimize the following energy:

Σid(pi)
2 + w

(
ΣN

j=N−k(
1

||sj − sj−1||
)2

+ΣN
j=N−k||xj − xj−1||2

+ΣN−1
j=N−kκ(sj−1, sj , sj+1)2

) (1)

The first term is the squared distance of a sweep point

from the input mesh. The other ones are regulariza-

tion terms that penalize, respectively: short segments

(avoid zero-length steps), changes in the transformation

parameters xj (avoid parameter wobbles), and curva-

ture of the sweep path (prefer smooth curves). A small

weight w is chosen to scale the regularization terms, so

fitting the data has highest priority. To calculate cur-

vature κ we use the discrete integrated curvature met-

ric [2]. To compute distances d(pi) efficiently, we use

a precomputed, adaptively-sampled distance field [5].

Note that this procedure, like most non-linear opti-

mizations, relies on some arbitrary constants such as

the regularization weight w above. For consistency, we

used the same values for our constants across all our

examples.

This process continues until no segment can be

added under the current error bounds, where error is

the maximum distance from sweep surface to input

mesh. Initial error bounds are set at a small constant

factor above the error of the initial sweep segment. The

user may implicitly increase the error bounds by mark-

ing additional points that should be included in the

current progressive sweep extraction.

4 Mesh Editing

As soon as any sweep model is extracted, the user can

use the “handles” of the extracted sweep to edit the

mesh without losing any surface details contained in

the original input data. Mesh editing is illustrated in

Figs. 1, 2, 3 and 4. Fig. 2 shows the additional handles

provided for a progressive sweep: the sweep path itself

(on the leg), the cross-section template, and the ad-

justable transformation parameters along the path (in

this case, scale).

A B

Fig. 2 (A) Key elements of the user-interface: the discovered
sweep path and the corresponding cross-sectional template,
and a curve that controls the scale transformation applied to
this template as it moves along the sweep path. The user can
edit the surface by dragging any of the handles. (B) Modified
model surface after editing both legs.

Handle-based mesh editing relies on a correspon-

dence between the vertices of the original surface and

their closest images on the extracted sweep model.

When a structured modification is applied, every mesh

vertex is moved exactly as its corresponding image on

the sweep surface.

For the stationary, rotational sweeps, we can also re-

project all original mesh points with the transformation

of the global sweep motion factored out, thereby creat-

ing a “fuzzy” profile (Fig. 3C). This collapsed mesh

surface can be understood as a collection of all possible

profiles encountered on the extracted surface. Portions

4 James Andrews et al.

of this fuzzy profile can now be selected and moved

around, for instance to extend the nose and mouth por-

tions on all the faces (Fig. 3B).

A B C

Fig. 3 A: The input surface is a detailed shape with a high-
level rotational structure. B: We edit the profile of the shape
and transfer that edit back to the original mesh, preserving
details. C: The extracted profile: at left: the overall view of
the collapsed mesh; at right, a detailed view showing the in-
dividual triangles of the input mesh.

5 Results

We tested our modules on a variety of input files (Figs.

1, 2, 3, 4). Fig. 4(A,B) shows the modification of a sweep

with a complex path and a twisting cross section. Figs.

2, 3, and 4C demonstrate that we can fit surfaces with

complex detail on top of the basic sweep structure.

A B C

Fig. 4 A: The input surface with its cross-section template
in red that twists as it moves along the loop. B: The same
sweep with a modified cross section. C: A stroke (yellow) ex-
tracts the main hump of the dragon. The default error thresh-
old controls the extent of this sweep

All our examples took less than a minute of user

and computer time on a laptop with 2GB RAM and

a 2.4 GHz Core Duo processor. All computation times

were less than 10 seconds, with model sizes up to 870k

triangles (Fig. 4C).

To begin mesh editing, a correspondence from orig-

inal mesh vertices to the extracted model must be es-

tablished; this is linear in mesh size, taking 1063 ms

for Fig. 4C. Mesh vertices can then be updated inter-

actively, taking 16 ms per update for Fig. 4C.

The two powerful sweep extraction modules dis-

cussed in this paper are components of an in-progress

Inverse 3D Modeling system, which will provide similar

interfaces for a wider range of modeling primitives, such

as CSG and subdivision surfaces. These sweep modules

are an encouraging first demonstration. We found that

a few cursor strokes by the user are sufficient to initial-

ize the system, and a straightforward local optimization

approach can be made fast enough for our on-demand

reverse engineering needs.

Acknowledgements Work was supported in part by the
National Science Foundation (NSF award #CMMI-1029662
(EDI)) and by Adobe Systems.

References

1. Benko, P., Martin, R.R., Vrady, T.: Algorithms for
reverse engineering boundary representation models.
Computer-Aided Design 33(11), 839 – 851 (2001)

2. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B.,
Grinspun, E.: Discrete elastic rods. In: ACM Siggraph
(2008)

3. Dassault Syst.: Catia. http://www.3ds.com/products/catia
4. Dion D., J., Laurendeau, D., Bergevin, R.: Generalized

cylinders extraction in a range image. pp. 141 –147 (1997)
5. Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.:

Adaptively sampled distance fields: a general represen-
tation of shape for computer graphics. SIGGRAPH ’00,
pp. 249–254 (2000)

6. Gelfand, N., Guibas, L.: Shape segmentation using local
slippage analysis. In: Eurographics Sympoium on Geom-
etry Processing (2004)

7. Hofer, M., Odehnal, B., Pottmann, H., Steiner, T., Wall-
ner, J.: 3d shape recognition and reconstruction based
on line element geometry. In: Tenth IEEE International
Conference on Computer Vision (2005)

8. Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin,
H., McDonald, J., Schweitzer, J., Stuetzle, W.: Piecewise
smooth surface reconstruction. SIGGRAPH ’94, pp. 295–
302 (1994)

9. Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces
to dense polygon meshes. SIGGRAPH ’96, pp. 313–324
(1996)

10. Lai, J.Y., Ueng, W.D.: Reconstruction of surfaces of rev-
olution from measured points. Computers In Industry
41, 147–161 (2000)

11. Madsen, K., Nielsen, H.B., Tingleff, O.: Methods for non-
linear least squares problems (2nd ed.) (2004)

12. Pottmann, H., Randrup, T.: Rotational and helical sur-
face approximation for reverse engineering. Computing
60, 307–322 (1998)

13. Ramamoorthi, R., Arvo, J.: Creating generative models
from range images. In: ACM Siggraph (1999)

14. Ueng, W.D., Lai, J.Y., Doong, J.L.: Sweep-surface
reconstruction from three-dimensional measured data.
Computer-Aided Design 30(10), 791–805 (1998)

15. Varady, T., Martin, R., Cox, J.: Reverse engineering of
geometric models - an introduction. Computer Aided
Design 29, 255–268 (1997)

