
Volume 0 (1981), Number 0 pp. 1–11 COMPUTER GRAPHICS forum

A Linear Variational System for Modeling From Curves

James Andrews†1,2 Pushkar Joshi‡2 and Nathan Carr§2

1U. C. Berkeley
2Adobe Systems Inc.

Abstract
We present a linear system for modeling 3D surfaces from curves. Our system offers better performance, stability,
and precision in control than previous non-linear systems. By exploring the direct relationship between a standard
higher-order Laplacian editing framework and Hermite spline curves, we introduce a new form of Cauchy con-
straint that makes our system easy to both implement and control. We introduce novel workflows that simplify the
construction of 3D models from sketches. We show how to convert existing 3D meshes into our curve-based rep-
resentation for subsequent editing and modeling, allowing our technique to be applied to a wide range of existing
3D content.

Categories and Subject Descriptors (according to ACM CCS): COMPUTER GRAPHICS [I.3.5]: Computational
Geometry and Object Modeling—Curve, surface, solid, and object representations;

1. Introduction

Figure 1: Example shapes modeled using our framework.

Sketch-based modeling of smooth shapes has allowed
novice users to quickly create complex, organic 3D shapes

† e-mail: jima@eecs.berkeley.edu
‡ e-mail: pushkarj@adobe.com
§ e-mail: ncarr@adobe.com

from sketches. Users unfamiliar with 3D modeling can in-
tuitively model and edit 3D shapes by drawing curves that
denote significant shape features. These curves act as con-
straints for the 3D model: the surface must pass through
these constraints and is usually kept smooth in all uncon-
strained regions. The user controls the 3D shape by modify-
ing the constraint curves.

In this paper we show how to extend a standard lin-
earized Laplacian framework to create a fast, robust curve-
based freeform modeling system. Offering control directly
analogous to that of Hermite splines, we allow direct con-
trol of tangents and curvatures along the constraint curves.
Our technique can represent a vast majority of shapes users
would expect to create with a sketch-based interface. We
demonstrate how users can convert existing 2D artwork into
3D shapes easily and quickly.

Any new modeling system cannot afford to ignore the
vast libraries of existing shapes that are stored as polygonal
meshes. Therefore, we show how to reverse engineer exist-
ing meshes into our curve-based representation for subse-
quent editing.

2. Related Work

The literature for methods that simplify the construction
of geometric models is vast, and contains approaches that

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

J. Andrews, P. Joshi & N. Carr / A Linear Variational System for Modeling From Curves

use almost every surface representation studied in geomet-
ric modeling (polygon meshes, parametric patches, implicit
functions, etc.). In this section, we limit our discussion to the
area in which we claim our contributions: surface modeling
via feature (or sketched) curves.

Subdivision surfaces are a popular choice of linear sur-
face primitive, and have been extended to support edit-
ing with feature curves. For example, [Lev99] uses com-
bined subdivision surface schemes to interpolate networks
of curves. [BLZ00] provide subdivision surfaces with nor-
mal control at the boundary (without adding inconvenient
control net vertices). A parametric or subdivision-based N-
sided patch needs the control net that bounds the bound-
ary patch, creating unnecessary internal control vertices that
are difficult to manage. A potentially cumbersome modifi-
cation of the internal control structure is needed to create
sharp creases or holes. Independent of subdivision surfaces,
N-sided patches with normal control at the boundary have
a rich history in geometric modeling (e.g. [Gre83]). In his
thesis, Loop described a method for constructing an N-sided
Bezier patch from a convex polygon with G1 boundary con-
ditions [Loo92]. [KS08] describe a sketch-based interface
(their “SketchCad” tool) for producing surface patches that
interpolate user-drawn sketches with G1continuity. Such N-
sided Bezier-like patches have also been implemented in
commercial products like FreeDesign [GPR09].

Our desire for a simple, intuitive, yet powerful represen-
tation has led us instead to variational patches, where the
surface is computed as the solution of a linearized opti-
mization problem (the so-called “PDE method” of [BW90]).
Our method is based in particular on the work of [BK04]
and [SK01]. We add the ability to conveniently specify con-
straints as curves and a new method to control the surface
behavior near these constraints.

Recent modeling interfaces targeted at novice users pro-
duce surfaces from curves. A common goal in these systems
is to better capture the modeler’s intent without burdening
them by constraints imposed by the underlying mathemat-
ical/topological representation. The Teddy system showed
that with the right surface representations and user inter-
faces, 3D modeling can be made accessible to novice users
[IMT99]. The developers of “ShapeShop” [SWSJ05] use im-
plicit surfaces to produce shapes with complex topologies.
Nealen et al. [NSACO05] implemented a sketch-based inter-
face for modifying existing meshes. Karpenko et al. [KH06]
examined the issue of creating surfaces by inferring 3D
shape from feature curves drawn in 2D by artists. FiberMesh
built upon the ideas of Teddy, providing a richer surface rep-
resentation and enhanced user interface [NISA07]. Joshi et
al. [JC08] used a similar variational system to create 3D
shapes from existing 2D content, and Olsen and Samavati
[OS10] took a similar approach to modeling from sketches
on images. Gingold et al. [GZ09] developed a surface mod-
eler that can infer position and normal features from the

shading applied to the model. Both the works of [NSACO05]
and [GZ09] describe a method for specifying the surface
normal at a constraint curve by rotating the frame of the
Laplacian to match the prescribed surface normal. In con-
trast, our method simplifies the ability to set the surface nor-
mal independently on either side of the constraint. There
has also been significant work in the area of modeling 3D
space curves: the “ILoveSketch” system [BBS08] provides
an elegant, artist-centric interface for drawing curves in 3D.
The user-interfaces developed in many of these works are
complimentary to our patch representation; in fact, our sur-
face representation could be used as an improved, underly-
ing system in many of the above-mentioned sketch-based in-
terfaces.

3. Linear vs. Non-Linear Solvers

Nealen et al. [NISA07] recently explained two disadvan-
tages of a linear solver very similar to ours: (1) planar posi-
tion constraints generate planar solutions, and (2) the shapes
generated by a linear bi-Laplacian system do not always dis-
tribute curvature in a desirable way. We introduce the di-
rect manipulation of Cauchy constraints that solve both these
problems, allowing us to, for example, produce approxima-
tions of spheres from circles used as constraint curves. Like
other linear mesh-based solvers, our system depends on the
initial domain used to define edge weights — so far, we have
not observed this dependence to be a significant issue. A
true non-linear solution should be independent of any ge-
ometry used to initialize the solver, barring local minima in
energy space. Even though non-linear systems can capture
more complex energies (e.g., [EP09]), a number of advan-
tages reside in linear-system-based mesh solutions:

- Performance: FiberMesh [NISA07] uses a very fast
non-linear smooth surface solver, but it still comes at a real
performance cost compared to the linear system. Our basic
(bi-Laplacian) solve is roughly equivalent to one iteration
of the FiberMesh non-linear solver, which typically takes
5-10 iterations to converge. The method of Wardetzky et
al. [WBH∗07] is also impressively fast, but does not quite
achieve interactive rates yet. Other methods, such as Xu et
al. [XZ07], are not designed for interactive use and take on
the order of minutes to converge for relatively small exam-
ples.

- Convergence: Any iterative non-linear solve requires
some consideration of its convergence. In fact, in most cases,
one cannot guarantee that the solver will converge, nor can
one guarantee that a non-converging solver is sufficiently
close to the solution [WBH∗07]. We do not have a formal
analysis of the FiberMesh solver, but have observed that
in many simple cases (especially with concave constraint
curves) it does not appear to converge in practice, at least
as implemented in the publicly released demonstration ap-
plication. The mesh surface instead oscillates between sev-
eral states (Fig. 2(bottom)). In some cases the mesh surface

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

J. Andrews, P. Joshi & N. Carr / A Linear Variational System for Modeling From Curves

Figure 2: Top row shows a simple case where horizontally
dragging a constraint curve drawn on an ellipsoid causes the
FiberMesh system to become unstable. Bottom row shows
configurations in which the FiberMesh system produces an
oscillating surface that never converges. This test was per-
formed by invoking the eraser tool with no constraints se-
lected to make the solver perform additional iterations.

appears to diverge, rapidly inflating so extremely that the tri-
angles become invalid, which is disastrous for its iterative
solver. This occurs in very simple and easily-encountered
situations (Fig. 2(top)). These issues are not surprising, as it
is common for the stability of this kind of global non-linear
optimization to depend on the initial configuration [HKS92].

- Predictability: Our linear system behaves like a 2-
manifold, discrete analog to the familiar Hermite splines.
Therefore, its behavior tends to be predictable: small
changes to a constraint result in small changes to the lo-
cal surface. In contrast, non-linear systems can have critical
points where sudden, large changes in the solution can oc-
cur. For example, in the FiberMesh system a small change to
a constraint can often result in surprisingly large changes to
the surface. Perhaps the most noticeable and common issue
along these lines is that a portion of the surface can sud-
denly become enormous, covering up other constraints lines
and making further editing difficult.

Our system requires the artist to manage sparse tangent
constraints in addition to position constraints. The introduc-
tion of tangent constraints, while possibly viewed as a bur-
den, allows the artist an intuitive fine-grained level of control
over surface detail. This coupled with the performance and
robustness of the linear solve make it an appealing choice
upon which to build a modeling system.

Finally, the linearization will also allow us to derive lin-
ear expressions for smooth vertices in terms of the con-
straints. In addition to potentially providing further perfor-
mance gains, this turns out to be invaluable for the reverse
engineering process (Section 6.2).

4. The Laplacian Modeling Framework

Our approach is to (1) define constraint curves and vertices
on an input mesh surface, and (2) edit the surface by mod-
ifying those constraints, while keeping the surface smooth
near unconstrained regions. In this section, we focus on the
mesh-based Laplacian framework that underlies our smooth
surface solver and how we implement our constraint curves
within that framework. Approaches for using this Laplacian
framework to obtain surface meshes are described in Sec-
tions 5 and 6.

4.1. Understanding the Laplacian Modeling
Framework

Our basic smooth surface primitive closely follows the work
of [BK04]: we assume we’re given either a closed mesh
with internal constraints, or an open mesh with constraints
on the boundary. Given this triangulated domain, we solve
∆

k(p) = 0 for k typically equal to 2 or 3, where ∆ is a discrete
Laplacian operator. Specifically, the higher-order Laplacian
is defined recursively at a mesh vertex as:

∆
k(u) = ∑

i
wi(∆

k−1(u)−∆
k−1(vi)) (1)

vi are the one-ring neighbors of vertex u, ∆
0(u) = u and

wi are the cotangent weights [PP93] scaled by inverse ver-
tex area. Cotangent weights are computed in a fixed initial
domain and held constant to linearize the system. By formu-
lating this equation for all unconstrained vertices in a mesh,
we obtain a sparse symmetric positive-definite linear system
of the form Ax = b, which we factor and solve with the Su-
perLU solver [DEG∗99]. This approach is commonly used
and is not novel, but we develop an intuitive understanding
of its behavior by analogy to the 1-manifold case, and use
this analogy to guide our development of a useful Cauchy
constraint.

Consider the behavior of this modeling primitive in the
simpler 1-manifold case of a curve. Solving for a curve with
∆

2(u) = 0 corresponds to constraining the fourth derivative
(with respect to the user-defined parameterization) of a para-
metric curve to be zero, which is a property of a cubic Her-
mite curve. This curve is completely defined by constrain-
ing the positions and first derivatives at its end points — a
Cauchy boundary condition (i.e., a combination of Dirich-
let and Neumann boundary conditions). From these bound-
aries, we control the tangent direction and also the tangent
strength. Likewise, the k = 3 case corresponds to a quintic
Hermite spline (where we control the position, first and sec-
ond derivatives), and the k = 1 case is a straight line (where
we control only the position). The stable behavior and flex-
ible artistic control of these ubiquitous curve primitives is
what the method of [BK04] generalizes to 2-manifolds.
Unlike the traditional extension of Hermite splines to sur-
faces via regular grids, this method allows us to general-
ize to “patches” of completely arbitrary topology, arbitrarily

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

J. Andrews, P. Joshi & N. Carr / A Linear Variational System for Modeling From Curves

complex boundaries, and with surface derivatives specified
everywhere on the boundary. In our system, the constraints
that specify the Cauchy boundary conditions (and optionally
also higher-order derivative conditions) are called Cauchy
constraints.

4.2. Cauchy Constraints as 1-D Laplacians

As discussed in Section 3, Cauchy constraints are essential
to our 2-manifold solver – not just for additional artistic con-
trol, but also for avoiding the “planarity problem” discussed
by [NISA07] and for mitigating the domain-dependence of
our solution. For best results, we found that these Cauchy
constraints should be implemented using “external” Cauchy
constraints (we provide a more detailed argument in Ap-
pendix A). External constraints can be added by introduc-
ing non-visible ghost geometry along constraints to allow
for higher-order surface control. Such ghost geometry has
also been used previously for fluid simulations [FAMO99].
From the perspective of the solver, the ghost geometry com-
pletes missing neighborhood information around the mesh
constraints, thus allowing basic operators (e.g., Laplace-
Beltrami) to be directly evaluated at those locations. Al-
though Cauchy constraints are simple to understand for 1-
manifolds, extending these constraints to the 2-manifold
case raises some interesting problems. First, generating con-
sistent connected strips of ghost geometry around open
boundaries can be a cumbersome task in the presence of
sharp concavities [SK01]. Second, it is unclear how to in-
troduce additional consistent strips of ghost geometry for
internal constraints (i.e. constraints that are not on an open
boundary of the mesh).

We address the above issues by maintaining local consis-
tency of the mesh connectivity. We observe that local con-
sistency is sufficient for providing artistic control over the
surface near the constraint. That is, the ghost geometry does
not need to be globally consistent with the rest of the mesh.
Instead, locally completing a constraint vertex neighborhood
by adding ghost vertices is sufficient.

In practice, the process of inserting ghost geometry to
maintain local consistency is extremely simple: we com-
plete the Laplacian formulation by adding ghost vertices
that are mirrored versions of the constraint vertex neigh-
bors (as shown in Fig. 3). Ghost vertices allow the compu-
tation of 1-D Laplacians at constraint vertices. Appendix A
provides the pseudocode for incorporating ghost vertices in
an arbitrary-order mesh-based Laplacian system. Moreover,
this method of completing the Laplacian in a mesh-based
system is topologically convenient (no explicit geometry is
added to the mesh) yet very powerful (we can control posi-
tion and tangent behavior along every point of the constraint
curve).

u

 v

 v2

 v1

v’

stretch

u

u

g1

g2

g g’

 v

v’

sharpness

g

g’

θ

Top View Side View

surface orientation normal

surface orientation normal

Figure 3: The ghost vertex interpretation of the micro-
Laplacian of u from the perspective of neighbors v1 or v2
is shown (left): vertices v1 and v2 are mirrored across u to
form g1 and g2 respectively. The parameters used to influ-
ence the position of internal vertex v by moving the ghost
vertex g connected to a constraint vertex u is shown (right).
The three ghost vertex parameters are the orientation (or av-
erage surface normal at u), the sharpness, and the stretch.
Moving the ghost vertex g to a new position g′ moves vertex
v to position v′ after the linear solve.

4.3. The Micro-Laplacian and its Conceptual Basis

We can insert ghost geometry to specify surface behavior
at boundary vertices as well as at interior constraint ver-
tices. For the sake of understanding the theoretical under-
pinnings of the ghost geometry, we introduce the concept
of a “micro-Laplacian.” The micro-Laplacian demonstrates
that the notion of local consistency actually corresponds to
adding more detail to the constraints than the mesh resolu-
tion would normally permit. We remind the reader that the
exposition in this sub-section explains why the ghost vertices
work, and understanding this explanation is not necessary
for implementing this paper.

The micro-Laplacian is best understood by considering
the case of an isolated constraint vertex u, shown in Fig. 4.
We interpret such a constraint as representing a tiny hole in
the mesh — a hole much smaller than the mesh resolution
could represent — with each side of the hole seeing a differ-
ent piece of geometry. To represent this, for each vertex vi
adjacent to u, we replace u with virtual constraint vertex ui
which is only visible to vi. Vertex vi then creates a ghost ver-
tex gi reflected across ui. Each ui has the same position as u,
but has its own Laplacian. Note that ui is not visible to ui−1
or ui+1 or vice-versa; similarly, gi is connected only to ui,
but not to ui+1 or ui−1. This means that the mesh connectiv-
ity is locally consistent, but is not globally consistent. This
mental model allows us the freedom to control the surface
orientation separately at each side of the constraint vertex,
allowing us, for example, to place a sharp point at the con-
straint vertex. Note that the Laplacian at constraint vertex u

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

J. Andrews, P. Joshi & N. Carr / A Linear Variational System for Modeling From Curves

u1u5

u4

u3

u2

u

 u6

g5
g6

g3

g2

g1
g4

 v6

 v1

 v2

 v3

 v4

 v5

 V1

g1

u1

 v1
e1

g1

u1

 v1

e1

e2

e2

mirror plane

Figure 4: An isolated single-vertex constraint interpreted
as representing a tiny hole in the mesh (top). We define a
“micro-Laplacian” which allows us to simulate these small-
scale details by defining a separate Laplacian at constraint
u for each incoming vertex vi. We can visualize the micro-
scale geometry (bottom) as a hinge bending across the lo-
cal tangent direction of the constraint edge tessellated as
shown, and extending as far as needed to define our free
vertex order-k Laplacians.

is different based on which neighbor vi is being considered.
(The stability of our system with these inconsistent Lapla-
cians has withstood thorough testing without any issues.)

To define the Laplacian of this virtual geometry, we invent
a simple, explicit model for the shape of the virtual geome-
try. We define the edge of the “hole” to be a straight line in
our desired local tangent direction, and the surrounding ge-
ometry to form a cylindrical patch or hinge. As shown in the
bottom row of Fig. 4, the micro-Laplacian operates on this
cylindrical shape, i.e., on the positions of the internal vertex
v1, corresponding constraint vertex u1, ghost vertex g1 and
orthogonal edge endpoints e1 and e2. The cylindrical shape
bends along the local tangent direction of the virtual con-
straint edge, and is flat in the orthogonal direction. Because
the Laplacian is a measure of curvature, and there is by our
definition no curvature except along the bending direction,
we need only to consider the edges in the direction of bend-
ing to compute the Laplacian. In Appendix B we show how
this holds in practice even when we explicitly define a tessel-
lation for the micro-scale geometry: all terms of the Lapla-
cian of ui may be dropped except for the positions of ui, vi,
and a ghost vertex gi (which is defined initially by reflec-
tion of vi across ui, shown in Fig. 3). By symmetry the two
remaining terms must have equal weight. Therefore, for the
Laplacian of constraint vertices in Eqn. 1, we use the ghost

vertices to get:

∆
k(ui) = 2w∆

k−1(ui)−w∆
k−1(vi)−w∆

k−1(gi) (2)

Because the scale of our virtual geometry is arbitrary, we
let w = 1 in Eqn. 2. Because gi is positioned such that the
Laplacian is initially zero, this will only affect how much gi
must move as stretch is introduced in Section 4.4 (we formu-
late the linear system weights with the assumption that the
initial stretch is zero).

Although we have explained the micro-Laplacian in the
context of an isolated constraint vertex, the concept applies
wherever a sudden change or discontinuity in the Laplacian
is desired. In practice, it also works well when no discon-
tinuity is required. In fact, for simplicity we use the micro-
Laplacian for all Cauchy constraints in our examples. Note
that some care must be taken to treat micro-Laplacians con-
sistently when discontinuities are not desired: for example,
they should be rotated about a consistent axis (as described
in Section 4.4).

4.4. Parameterizing Cauchy Constraints for the Artist

Controlling the surface near constraints by directly modify-
ing the ghost vertex positions is not intuitive to artists and
designers. Instead, we encapsulate first-order Cauchy con-
straints with the parameters illustrated in Fig. 3: orienta-
tion, sharpness, and stretch, which are the parameters that
the artist sees and manipulates. Orientation defines the av-
erage surface normal at a constraint. Sharpness defines the
angle between that average surface normal and the local sur-
face normal on each side of the constraint – for example, a
0 degree sharpness parameter creates a flat surface, while a
45 degree sharpness parameter creates a right-angled crease
at an internal constraint curve, or a right-angled cone at an
isolated constraint vertex. Stretch is constrained to always
stretch the surface away from the constraint, and has an ef-
fect equivalent to increasing the magnitude of the derivative
for a Hermite spline – the surface maintains its local tangent
direction farther away from the constraint. Orientation can
be controlled by any standard rotation UI (such as an arc
ball), while sharpness and stretch are simple 1-dimensional
parameters which can be specified by sliders.

To define a ghost vertex gi (at constraint vertex u from
vertex vi) using these parameters, we must additionally de-
fine some axis of rotation ri about which the sharpness pa-
rameter will crease the surface. For a point constraint, we
choose n× (vi− u) as the axis, where n is the initial aver-
age surface normal at u. For a curve constraint, we choose
the tangent direction d of the curve at that vertex u, or −d
if (n× (vi− u)) · d < 0 (to rotate in opposite directions on
opposite sides of the crease). Our parameters then define a
rotation matrix O for orientation, a crease angle θ for sharp-
ness, and a stretch parameter s. If we define a rotation matrix

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

J. Andrews, P. Joshi & N. Carr / A Linear Variational System for Modeling From Curves

Ri for sharpness as a rotation by θ about axis ri, then we ar-
rive at the formula:

gi = u+ORi

(
1+

s
||u−vi||

)
(u−vi) (3)

Note that we scale the stretch parameter by the inverse of
the length of the edge, so the amount of stretch introduced is
independent of mesh resolution.

Typically, these parameters are specified for a whole curve
at once, or smoothly defined along regions of curves. This
higher-level view also allows our constraints to be indepen-
dent of mesh resolution. When new vertices are introduced
along a constraint curve, for example by refining the mesh,
we simply interpolate the orientation, sharpness and stretch
parameters.

5. Generating New 3D Models from Curves

We now describe our first application of the Laplacian
framework: a system for modeling new geometry from
curves. We demonstrate the capability of our system to gen-
erate high-quality results in practice.

Drawing a 2D sketch of a smooth object can often be eas-
ier than building that object with a 3D modeling tool. With
that in mind, we designed our workflows for easily con-
verting an existing sketch into a 3D model. We focused on
sketches of objects that were mostly smooth, but had some
sharp features. The input to the system is a vector art file
that specifies paths (usually Bézier curves) that make up the
sketch. We require that all non-closed paths in a given 2D
sketch be bounded by a closed path. Our system samples the
input curves and converts them into piece-wise linear con-
nected segments, i.e. polylines; we then convert these line
segments into a high-quality triangulation using the software
package “Triangle” [She96].

This triangulated, flat piece of geometry becomes a live
patch that may be inflated into 3D, edited, and also joined
with other such patches to create a complete, optionally-
watertight model. By using the same approximations for
each boundary curve, we ensure a consistent triangulation
across boundaries of patches that may share a polyline and
avoid troublesome T-junctions. G1 continuity may be en-
forced across patch boundaries by automatically keeping the
orientation parameter consistent for boundary vertices that
are shared by two or more patches. (In general for order-
k Laplacian systems, Gk−1 continuity may be enforced; we
used the bi-Laplacian (k = 2) system for all examples in this
section.) Within each patch, input curves may be marked as
Cauchy constraints, smooth position constraints (with fixed
position and Laplacian computed using the local geometry),
or inactive constraints, explained below.

5.1. Inactive Constraints

One challenge in surface modeling from a 2D sketch is to
convert existing 2D curves into 3D space curves. Our solu-

tion is to simply deactivate some interior constraint curves.
An “inactive” constraint is essentially a passive curve that
stays on the surface, gets modified along with the surface,
but does not affect the surface. By changing parameters
stored at the active constraints, we can modify the surface
and turn the inactive constraints from flat 2D curves into 3D
space curves. The user can activate the inactive constraints
at any time when their 3D shape meets the user’s expecta-
tions. See Fig. 5 for an example. Because drawing smooth
curves in 3D space is more difficult than drawing smooth
curves in 2D, we believe that harnessing the patch inflation
mechanism is an easy way to produce 3D constraints.

5.2. Making Patches from Constraints

The user may add additional constraints to the existing, in-
flated patch. Eventually, a single patch may not be sufficient
to construct the desired shape. At that stage, the user may
choose to decompose the single patch into multiple, disjoint,
and possibly abutting patches. Our preferred approach for
doing so is to incrementally break apart the patch into sepa-
rate patches. The user selects a constraint curve and asks the
system to make a separate patch with the constraint curve as
the boundary. If the constraint curve is closed, it is turned
into a hole in the original patch. If the constraint curve is not
closed, the original patch is unchanged and the system closes
the open constraint curve by connecting its endpoints with a
line segment. The 3D position and orientation required for
every point along the boundary of the new patch are taken
from the original patch surface. The new patches can be
edited independently from the original patch and further de-
composed into more patches. See Fig. 6 for an example of
decomposing a patch into smaller ones for the purpose of
adding more detail, and Fig. 7 for an example of patch de-
composition to create several free floating patches.

Decomposing a single patch into multiple patches has sev-
eral design advantages. Most importantly, the user gets lo-
cal control over the shape being modeled: adding or ma-
nipulating the constraints on one patch will not affect other
patches. There are also computational advantages: the local-
ity of patch edits means that only the affected patch needs to
be updated. If multiple patches are affected, separate inde-
pendent threads can be trivially dispatched to carry out the
computation.

5.3. Preliminary User Feedback

A professional designer used our prototype implementation
to build the examples shown in Figs. 5, 6 and 7. The
shape in Fig. 7 took about 30 minutes to create. The pig in
Fig. 5(C) took about 10 minutes to create, though the artist
spent an additional three hours refining that result to arrive
at Fig. 5(E). Overall, the designer was very pleased by the
ease with which he was able to model organic shapes as
well as shapes with sharp edges. However, our user interface

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

J. Andrews, P. Joshi & N. Carr / A Linear Variational System for Modeling From Curves

(A) (B) (C) (D) (E) (F)

Figure 5: The designer starts with a sketch and deactivates all internal constraints (shown in black) (A). By activating and
moving some constraints, the designer obtains the desired 3D positions of the inactive constraints (B). Cauchy constraints
(pink) are used to define the eyes, and additional smooth position constraint lines (green) are added on the 3D surface for more
control (C). The final states of the constraints (D) gives the surface (E) that is then shaded and rendered (F).

Figure 6: The designer makes a patch out of the 2D sketch
(left), and by editing parameters (position and sharpness) at
internal constraints makes a 3D model (middle). In order to
add more detail, selected internal faces (along the side pan-
els) are made into separate patches and edited by drawing
more Cauchy constraint curves (right).

was designed primarily for testing our system — we believe
that a better user interface for deforming the patch constraint
curves could substantially reduce the design time. A subset
of our system has also been implemented as a part of the
Repoussé feature in Adobe R© Photoshop R© CS5 Extended.

6. Reverse-Engineering Existing Meshes

In this section, we explore the potential of our system to re-
verse engineer existing shapes into our shape representation.
Instead of purely focusing on editing the existing geometry,
we envision reverse engineering as the basis for a “mesh im-
port” module that would allow the model to be edited seam-
lessly, as if it had been created with our tool set originally.
Therefore, instead of following the traditional mesh editing
approach of “baking” the existing mesh Laplacians in our
representation, we attempt to encode all geometric detail at
constraint curves, using our Cauchy constraints. We show
that a surface representation comprised of our Cauchy con-
straints is capable of expressing a large variety of shapes.
We noticed that the first- and second-order Laplacian solves
do not always produce cylindrical surfaces properly, instead

Figure 7: The designer produces the different sketch com-
ponents (top left), each of which was made into a new patch
(top right). By deforming the patch boundaries, the different
patches come together to form a flower (bottom left). Fur-
ther edits can be directly added on the 3D surface of each
patch (bottom right).

tending to collapse into an hour-glass shape; fortunately, us-
ing a tri-Laplacian (or higher) solve (with the corresponding
Cauchy constraints) tends to mitigate this issue (e.g., Fig. 9).

We re-use the existing mesh structure while converting it
into our patch representation. Given a set of important fea-
ture lines or points to mark as constraints, we set the Cauchy
constraint vertices appropriately to match the surface. We
use two heuristics to identify candidate feature lines: a dihe-
dral angle threshold (from [GSMCO09]) for mechanical or
CAD-style parts, and ridge/valley lines (from [OBS04]) for
organic meshes. For the Cauchy constraints, we find it often

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

J. Andrews, P. Joshi & N. Carr / A Linear Variational System for Modeling From Curves

100 sec.

Figure 8: Left is the input smooth shape with feature curves
extracted by ridges and valleys. Middle is the result obtained
by reducing feature curves (with computation time listed).
Right is an example of a simple edit to the bunny shape.

suffices to use a naive guess – simply set the constraint ori-
entation to match the surface normal at the constraint vertex.
This works well when the constraints are relatively dense,
and control of shape behavior away from constraint lines is
not as important as matching the shape near constraint lines.
This core process is extremely fast, requiring only a simple
pass over the mesh to identify features. We can optionally
refine our core reverse engineering process in two ways: re-
ducing the number of feature curves, and improving the fit of
the patches to the input mesh by optimizing the ghost vertex
positions.

6.1. Reducing Internal Feature Curves

When fewer feature curves are desired, we use a greedy al-
gorithm to select the important curves. We add one curve
at a time wherever the point-to-point error (defined below)
is highest. We stop when the maximum point-to-point er-
ror at any vertex is smaller than some threshold (0.1 in our
examples, assuming the input mesh is scaled to just fit in
a 5x5x5 box). To bootstrap this greedy approach, we re-
quire an initial surface to evaluate the point-to-point error.
For patches with a boundary, we use the boundary curves
to construct an initial surface. In the case of closed mod-
els, we select the longest internal feature curve as a start-
ing point to get an initial surface. This process, inspired
by [SCO04], is demonstrated for the bunny shape in Fig 8.
As with the greedy process described in [SCO04], this pro-
cess is slow because it requires we solve the system once per
every feature curve we select. (If speed of reverse engineer-
ing is important, the “combined local maxima” optimization
suggested in [SCO04] should apply here as well.)

6.2. Optimizing the Cauchy Constraints

As in all our examples, we use the micro-Laplacian formula-
tion for our Cauchy constraints. Optimization of the Cauchy
constraints is equivalent to optimization of the ghost vertex
positions. To accelerate the optimization process, we pre-
compute a linear expression for each vertex vi in terms of
each ghost vertex gj and a constant vector ki. This linear ex-

300 sec. 8 sec.

Figure 9: Left is the input shape with feature curves ex-
tracted by analyzing dihedral angles. Middle shows a tri-
Laplacian fit with a complete setup, giving a “wobbly”
shape. Right shows a tri-Laplacian fit with a reduced setup,
giving the best result and performance. The times needed for
fitting are listed below each result.

Figure 10: Left is the editable fandisk shape obtained af-
ter fitting – see Fig. 9(middle). We change parameters at
constraint curves to create an inflated version of the fan-
disk(right). Note that such control using a sparse set of fea-
ture curves would be very difficult to obtain with existing
methods.

pression takes the form:

vi = ki +Σ jwi jgj (4)

In this equation, our ghost vertex positions can be thought
of as new dimensions in a ghost vertex basis, where our
vertex positions are now expressed in that basis as (3+ n)-
dimensional vectors (ki1,ki2,ki3,wi1, ...,win), rather than 3-
vectors in our previous standard 3D basis. To compute the ki

Figure 11: Left is the target shape we wish to reconstruct.
Middle shows the shape preferred by the point-to-point error
metric. Left shows the shape preferred by the point-to-plane
error metric. In both cases, we used a tri-Laplacian solve for
our patches.

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

J. Andrews, P. Joshi & N. Carr / A Linear Variational System for Modeling From Curves

and wi j values, we solve the same Laplacian Ax = b system
from Eqn. 1, transformed into the new ghost vertex basis.
First, we express the right hand side b in that basis:

bi = li +Σ jmi jgj (5)

The weights mi j are the contribution of each ghost vertex to a
given right hand side vector bi. The constant vector li is the
total weighted contribution of fixed vertex locations to the
same bi. We can solve for basis weights wi j and the constant
terms ki by solving Aw=m and Ak= l (where w, m, k and l
are the matrices of all wi j , yi j, ki and li weights respectively).
This requires one linear solve per ghost vertex (Aw=m) and
three additional solves (one for X, Y, and Z) for the constant
vectors ki (Ak = l). With all ki and wi j computed, we are
now free to modify our ghost vertex locations and update
the mesh using Eqn. 4, without needing to re-solve the linear
system. We note that this general approach has been used by
others to accelerate mesh processing [BK04, JMD∗07].

To optimize our mesh, we define an error metric for each
free vertex. Using this metric and Eqn. 4, we determine the
ghost vertex positions by solving for the linear least squares
solution that minimizes this error. We have experimented
with two error metrics: first, a “point to point” metric that
measures the distance between the position returned by our
patch solver and the given vertex position. Second, a “point
to plane” metric that measures the distance between the po-
sition returned by our patch solver and the plane defined by
the given vertex with its normal. Neither choice is perfect:
the point-to-point metric will not distort texture, but tends to
“wobble” around the correct surface (Fig. 9(middle)), while
the point-to-plane metric fits some surfaces better (Fig. 11)
but is slower and often underconstrained.

In the method described so far, each 3D coordinate of each
ghost vertex is treated as a separate variable in the fitting
process. We call this the “complete” setup. Instead, for each
closed constraint curve, we could assign the same sharpness
and stretch parameters to all the ghost vertices. If we set
sharpness and stretch to move each ghost vertex in a local
2D frame, this permits a linear expression for each vertex
in terms of just two free parameters. For higher-order ghost
vertices, we use different parameters for each order of ghost
vertex. We call this setup the “reduced” setup. We notice that
reducing the degrees of freedom in this fashion can dramat-
ically improve both the speed of the system and the quality
of the results, as it can forbid “wobbly” solutions that our er-
ror metric alone does not sufficiently penalize. See Fig. 9 for
an example of fitting using the complete and reduced setups.
Fig. 10 and Fig. 8 show examples of fitting with sharp and
smooth edges, respectively.

7. Drawbacks and Future Work

Our future work primarily consists of exploring better user
interfaces for specifying Cauchy constraints; in particular,
we need a method for intuitively specifying second- and

higher-order Cauchy constraints. Along with a better user in-
terface, our future work will address some of the drawbacks
of our current implementation. We need to improve the fea-
ture curve extraction for smooth shapes — currently our im-
plementation requires that feature curve edges be aligned
with the mesh edges, which can produce crooked edges for
coarse meshes. We also need to invest more time evaluating
the best error metric for the fitting process — our point-to-
point and point-to-plane metrics were simple to implement
and worked well enough for our examples, but we expect
that more sophisticated mesh error metrics will produce bet-
ter fitting results.

A related limitation arises from the quality of tessellation.
To improve the accuracy of the solution, we need adaptive
tessellation, which is a well-studied problem in the finite el-
ement community. Mesh tessellation also impacts rendering
quality and the interpolation of normals for badly shaped tri-
angles can lead to shading artifacts. Such artifacts can be
reduced by performing anisotropic remeshing (again, a well-
studied problem in the meshing community).

The addition or removal of any constraint (or changing the
type of a constraint) requires a re-triangulation of the domain
and re-initialization and factorization of the linear system.
Although we cannot avoid this setup cost, we have noticed
that the setup time is small enough to not interfere with an
interactive user experience. A large majority of our patches
contain about 6000 free vertices for which the time for setup
(triangulation, matrix building, and matrix factorization) is
about 0.5 sec. and is fully interactive for the back-solve (on
a laptop with an Intel 2.4GHz Core2 Duo CPU with 2GB
RAM). Although our system is fast enough for the purposes
of the examples in this paper, we have room for performance
improvement (with optimized code) to match the numbers
reported by [BBK05].

8. Acknowledgements

Thanks to Daichi Ito for being our first test user, and cre-
ating the artwork shown in Figs. 5, 6 and 7. Thanks to
Pete Falco for suggesting work in Section 6. This work was
supported in part by the National Science Foundation (NSF
award #CMMI-1029662 (EDI)).

References
[BBK05] BOTSCH M., BOMMES D., KOBBELT L.: Efficient lin-

ear system solvers for mesh processing. In Mathematics of Sur-
faces XI. Springer Berlin / Heidelberg, 2005, pp. 62–83. 9

[BBS08] BAE S.-H., BALAKRISHNAN R., SINGH K.: Iloves-
ketch: as-natural-as-possible sketching system for creating 3d
curve models. In ACM UIST (2008). 2

[BK04] BOTSCH M., KOBBELT L.: An intuitive framework for
real-time freeform modeling. ACM Siggraph (2004). 2, 3, 9, 10

[BLZ00] BIERMANN H., LEVIN A., ZORIN D.: Piecewise
smooth subdivision surfaces with normal control. In ACM Sig-
graph (2000). 2

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

J. Andrews, P. Joshi & N. Carr / A Linear Variational System for Modeling From Curves

[BW90] BLOOR M. I. G., WILSON M. J.: Using partial differ-
ential equations to generate free-form surfaces. Comput. Aided
Des. 22, 4 (1990), 202–212. 2

[DEG∗99] DEMMEL J. W., EISENSTAT S. C., GILBERT J. R.,
LI X. S., LIU J. W. H.: A supernodal approach to sparse partial
pivoting. SIAM J. Matrix Analysis and Applications 20, 3 (1999).
3

[EP09] EIGENSATZ M., PAULY M.: Positional, metric, and cur-
vature control for constraint-based surface deformation. Comput.
Graph. Forum 28, 2 (2009). 2

[FAMO99] FEDKIW R. P., ASLAM T., MERRIMAN B., OSHER
S.: A non-oscillatory eulerian approach to interfaces in multima-
terial flows (the ghost fluid method). J. Comput. Phys. 152 (July
1999), 457–492. 4

[GPR09] GAO K., PARK H., ROCKWOOD A.: Feature based
styling. whitepaper, 2009. 2

[Gre83] GREGORY J.: n-sided surface patches. Mathematics of
Surfaces (1983), 217–232. 2

[GSMCO09] GAL R., SORKINE O., MITRA N. J., COHEN-OR
D.: iwires: an analyze-and-edit approach to shape manipulation.
In ACM SIGGRAPH (2009). 7

[GZ09] GINGOLD Y., ZORIN D.: Shading-based surface editing.
ACM Siggraph (2009). 2, 10

[HKS92] HSU L., KUSNER R., SULLIVAN J.: Minimizing the
squared mean curvature integral for surfaces in space forms. Ex-
perimental Mathematics 1 (1992), 191–207. 3

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: A
sketching interface for 3d freeform design. In ACM SIGGRAPH
(1999). 2

[JC08] JOSHI P., CARR N.: Repoussé: Automatic inflation of 2d
artwork. In Eurographics Symposium on Sketch-Based Interfaces
and Modeling (2008). 2

[JMD∗07] JOSHI P., MEYER M., DEROSE T., GREEN B.,
SANOCKI T.: Harmonic coordinates for character articulation.
ACM Siggraph (2007). 9

[KH06] KARPENKO O. A., HUGHES J. F.: Smoothsketch: 3d
free-form shapes from complex sketches. ACM Siggraph (2006).
2

[KS08] KARA L., SHIMADA K.: Supporting early styling de-
sign of automobiles using sketch-based 3d shape construction.
In Computer-Aided Design and Applications (2008), CAD Solu-
tions LLC. 2

[Lev99] LEVIN A.: Interpolating nets of curves by smooth sub-
division surfaces. In ACM SIGGRAPH (New York, NY, USA,
1999). 2

[Loo92] LOOP C.: Generalized B-spline Surfaces of Arbitrary
Topological Type. PhD thesis, University of Washington, 1992.
2

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.:
Fibermesh: designing freeform surfaces with 3d curves. ACM
Siggraph (2007). 2, 4

[NSACO05] NEALEN A., SORKINE O., ALEXA M., COHEN-
OR D.: A sketch-based interface for detail-preserving mesh edit-
ing. In ACM SIGGRAPH (2005). 2

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: Ridge-valley
lines on meshes via implicit surface fitting. In ACM SIGGRAPH
(2004), pp. 609–612. 7

[OS10] OLSEN L., SAMAVATI F.: Image-assisted modeling from
sketches. In Proceedings of the Graphics Interface (2010). 2

[PP93] PINKALL U., POLTHIER K.: Computing discrete minimal
surfaces and their conjugates. Experimental Mathematics 2, 1
(1993), 15–36. 3

[SCO04] SORKINE O., COHEN-OR D.: Least-squares meshes. In
Proceedings of the Shape Modeling International (Washington,
DC, USA, 2004), IEEE Computer Society, pp. 191–199. 8

[She96] SHEWCHUK J. R.: Triangle: Engineering a 2D Quality
Mesh Generator and Delaunay Triangulator. In Applied Compu-
tational Geometry: Towards Geometric Engineering, vol. 1148
of Lecture Notes in Computer Science. Springer-Verlag, 1996,
pp. 203–222. 6

[SK01] SCHNEIDER R., KOBBELT L.: Geometric fairing of ir-
regular meshes for free-form surface design. Computer Aided
Geometric Design 18, 4 (2001), 359–379. 2, 4, 10

[SWSJ05] SCHMIDT R., WYVILL B., SOUSA M., JORGE J.:
Shapeshop: Sketch-based solid modeling with blobtrees, 2005.
2

[WBH∗07] WARDETZKY M., BERGOU M., HARMON D.,
ZORIN D., GRINSPUN E.: Discrete Quadratic Curvature En-
ergies. Computer Aided Geometric Design 24, 8-9 (Nov 2007),
499–518. 2

[XZ07] XU G., ZHANG Q.: G2 surface modeling using minimal
mean-curvature-variation flow. Comput. Aided Des. 39, 5 (2007),
342–351. 2

Appendix A: Notes on the Laplacian Framework

Internal vs External Cauchy Constraints

There are several possible ways to constrain surface deriva-
tives at mesh vertices. We follow the method (à la [SK01])
of fixing positions of fictional, “external” vertices beyond
the mesh boundary on which the constraint vertex lies. A
common alternative is to fix the positions of “internal” ver-
tices adjacent to a constraint vertex, variants of which appear
in [BK04] and [GZ09]. At relatively coarse mesh resolutions
(which are common in practice) the internal constraint solu-
tions satisfy the gradient constraint exactly at the expense
of surface smoothness. The surface tends to have an un-
desirable, jagged crease near internal fixed vertices — this
problem is exacerbated for higher-order Laplacians, where
more internal vertices are constrained. These properties are
demonstrated in Fig. 12, showing a simple 1-manifold ex-
ample which allows us to compare the results of both dis-
cretizations to an exact solution.

Pseudocode

To construct the Laplacian matrix, we use a recursive func-
tion to build each row of the matrix individually as done in
algorithm 1. The recursive function “buildEqn” constructs
an equation that expresses the position of a free vertex as a
function of its neighbors — see bottom half of algorithm 2
for a standard Laplacian and top half of algorithm 2 for our
modified version with Cauchy constraints.

The first few arguments to both functions are: matrix “M”
and the index of row “r” corresponding to the free vertex,
vertex “v” whose Laplacian is being computed, the order

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

J. Andrews, P. Joshi & N. Carr / A Linear Variational System for Modeling From Curves

Figure 12: A 1-manifold example comparing internal and
external constraint vertices for a coarse mesh. The dotted
line shows the true Hermite curve solution. For fine meshes
both methods converge to the true solution.

“o” of that Laplacian, and the weight “wt” with which that
Laplacian will be considered. We have two additional ar-
guments to the buildEqn function of algorithm 2: the “sV”
variable to remember the source vertex we came from, and
the “gNum” variable to track which ghost vertex we are
considering: gNum 0 is the constraint vertex and gNum
1 through (laplacianOrder-1) indicates the ghost vertices
in order, extending out from the constraint. The function
“getEdgeWeight(v,n)” returns the cotangent weight of the
one-ring neighbor n of vertex v.

The right-hand-side of the equation is built by the
“setRHS” function in algorithm 2. If gNum is zero,
setRHS(r, v, gNum, sV, -wt) adds the position of vertex v
with weight -wt, else the position of the indicated ghost ver-
tex with weight -wt.

Algorithm 1 Build Laplacian Matrix
M = zeros(numUnconstrainedVertices)
for r = 0; r < numUnconstrainedVertices; r++ do

buildEqn(M, r, getVertex(r), laplacianOrder, 1)
end for

Appendix B: Micro-Laplacian on an Explicit Tesselation

Though it is intuitively clear that the non-bending terms
should drop from the micro-scale Laplacian, as discussed
in Section 4.3, it is not immediately obvious that this oc-
curs with the discrete Laplacian operator we have chosen for
our optimization. An arbitrary discretization may introduce
errors that prevent the other edges from cleanly cancelling.
Fortunately, we are free to define the exact tessellation of our
micro-scale geometry, and we can show that for a simple
uniform tessellation (Fig. 4(bottom row)), the non-bending
terms do indeed drop from the equation. Our assumed shape
bends along the local tangent direction of the virtual con-
straint edge and is flat in the orthogonal direction. We choose
a regular and consistent tessellation for this hinge geometry,

Algorithm 2 Build Laplacian Equation with Constraints
function buildEqn(Matrix M, int r, vertex v, int o, float wt, vertex sV=null, int gNum=0)

if v.isConstraint() then
if o == 0 then

setRHS(r, v, gNum, sV, -wt)
else

buildEqn(M, r, v, o-1, 2*wt, sV, gNum)
buildEqn(M, row, v, o-1, -wt, sV, gNum+1)
if gNum == 0 then

buildEqn(M, row, sV, o-1, -wt, v)
else

buildEqn(M, row, v, o-1, -wt, sV, gNum-1)
end if

end if
else

if o == 0 then
M[row, v.column()] += wt

else
wt *= 1.0/v.area()
for all neighbor n of vertex v do

buildEqn(M, v, o-1, wt*getEdgeWeight(v, n))
buildEqn(M, n, o-1, -wt*getEdgeWeight(v, n), v)

end for
end if

end if
end function

with the additional constraint that vertices e1, u1 and e2 are
collinear.

To compute the Laplacian at u1, we separately consider
the contribution of three different sets of edges to the Lapla-
cian Eqn. 1. Refer to Fig. 4. We call the edges that extend in
parallel lines (i.e., the edges connecting e1 to u1, and u1 to
e2 as shown in red in Fig. 4) the “transverse” edges. We call
the edges connecting v1 to u1 and u1 to g1 the “constraint”
edges. Finally, we refer to remaining edges as the “diagonal”
edges. We will show that for computing the Laplacian at u1,
we only need to consider the contributions of the constraint
edges.

The transverse edges contribute nothing to the first-order
(k = 0) Laplacian, as the two transverse edges at a vertex are
in the opposite direction and of equal length. They contribute
nothing to the higher-order Laplacians either, because the or-
der k > 0 Laplacian values are identical along the edges (the
bending and tessellation being the same), so the difference of
any order Laplacians across the edges is zero. Therefore, the
contributions of the transverse edges may be ignored com-
pletely for the Laplacian at u1.

By construction, the constraint edges are perpendicular to
the transverse edges in the base domain, as shown in Fig. 4.
Contributions of the diagonal edges to the Laplacian at u1
are therefore zero due to the cotangent weights being zero
for right angles. Therefore, the only edges we need to con-
sider while computing the Laplacian at u1 are the two con-
straint edges.

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

